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Abstract

In this short expository note we outline some of the basics geometric
group theory and use them to prove that all hyperbolic groups have a
finite presentation.

1 Groups into Metric Spaces

The central idea underlying geometric group theory is to use geometric tools to
study groups. To do this, we must first construct some sufficiently nice geometric
object that encodes the group. Throughout, we will assume that all groups are
finitely-generated; this assumption is not always necessary, but it helps to avoid
certain technicalities. For a more thorough introduction to geometric group
theory and related metric spaces, see [1] or [2].

Definition. Let G be a group and with S the generating set. For any g, h ∈
G, define the word metric dS(g, h) to be the length of the shortest word in S
representing g−1h.

Proposition. (G, dS) is a metric space.

Definition. Given a metric space (X, d) and an interval [t0, t1] ⊆ R, a curve
γ : [t0, t1]→ X is a geodesic if d(γ(t0), γ(t1)) = |t0 − t1| (where | · | is the usual
absolute value on R). We say X is a geodesic metric space (or a length space) if
there exists a geodesic between every pair of points x, y ∈ X.

Definition. Let G be a group with generating set S. The Cayley graph of
G with respect to S, ΓS(G), has vertex set G, and two vertices g, h ∈ G are
adjacent precisely when g−1h ∈ S or h−1g ∈ S.

Although (G, dS) is not itself a geodesic metric space, the Cayley graph ΓS(G)
is, and the metric dΓ is induced from dS in the natural way: If g, h are adjacent
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Figure 1: Cayley graphs for the cyclic group 〈x〉 with generating set {x} (left) and {x, x2} (right)

vertices in ΓS(G), then dS(g, h) = 1, so we declare that edges in the graph have
length 1. Inductively, it follows that dS(g, h) = n precisely when the shortest
path from g to h has length n, in which case these paths are geodesics in the
Cayley graph, and we parameterize the edges accordingly.
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Figure 2: Geodesic path from g to h on the Cayley graph of the free group F ({x, y})

As one might expect from Figure 1, the metric space properties of the Cayley
graph ΓS(G) rely on a specific choice of generating set. As it turns out, the
effects of this choice are only discernible locally, and the large-scale behavior of
this metric space is unaffected – we can overlook these choices by “squinting at
the space” or “viewing it from a distance.” We’ll make this notion precise.

2 Quasi-Isometries

Definition. Let (X, d) and (X ′, d′) be metric spaces, and let λ ≥ 1, κ ≥ 0. A
map f : X → X ′ is called a (λ, κ)-quasi-isometry if both of the following hold:

(1) For every x, y ∈ X,

1

λ
d(x, y)− κ ≤ d′ (f(x), f(y)) ≤ λd(x, y) + κ.

(2) There exists some ε > 0 such that for every y ∈ X ′, there exists a corre-
sponding x ∈ X for which

d′(y, f(x)) ≤ ε.

If such a quasi-isometry exists between (X, d) and (X ′, d′), we say that X and
X ′ are quasi-isometric.
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Proposition. Quasi-isometry is an equivalence relation.

The weakening of the isometry to the quasi-isometry allows us to regard non-
isometric spaces as “the same(ish)”. For example, Z and R with the usual
absolute value are quasi-isometric as the canonical embedding Z ↪→ R is a
(1, 0)-quasi-isometry and the map R → Z given by rounding to the nearest
integer is a

(
1, 1

2

)
-quasi-isometry. It follows then that Zn and Rn, both with

the usual metrics, are quasi-isometric.

Lemma 1. For any group G with finite generating sets S and S′, (G, dS) and
(G, dS′) are quasi-isometric (thus ΓS(G) and ΓS′(G) are also quasi-isometric).

Proof. Let λ be the maximum length of any generator x ∈ S expressed as a
word in S′. Then Id : G→ G is a (λ, 0)-quasi-isometry from (G, dS) to (G, dS)
satisfying dS′(x, x) = 0.

We may refer to two finitely generated groups as being quasi-isometric without
ambiguity. It is natural to ask which properties, if any, may be quasi-isometry
invariants. The title of this paper hints at one such property. The following
definition was originally presented by Gromov in [4] (along with other equivalent
characterizations).

Definition. We say that X is δ-hyperbolic (or just hyperbolic) if there exists
δ ≥ 0 such that, for any triangle with edges that are geodesic (segments) γi
(i = 1, 2, 3) and for every x ∈ γi, then there exists y ∈ γi+1 ∪ γi+2 (with indices
taken modulo 3) such that x ∈ Bδ(y). Such triangles are called δ-slim.

δ

Figure 3: A δ-slim geodesic triangle

The definition of δ-hyperbolicity in a metric space is an attempt to coarsely
model the behavior of negative curvature as in classical hyperbolic geometry.
There are many other useful and interesting variants of this idea which are
explored more thoroughly in [2].

Lemma 2. Let (X, d) and (X ′, d′) be quasi-isometric geodesic metric spaces.
Then (X, d) is hyperbolic if and only if (X ′, d′) is hyperbolic.
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The proof of this lemma is actually rather involved. In the interest of both
brevity and clarity of exposition, we’ve chosen to just outline the argument; a
complete argument can be found in [2, Ch. III.H.1]. The crucial objects in the
proof are quasi-isometrically embedded real intervals.

Definition. Let (X, d) be a metric space. A curve γ : [t0, t1] → X is called a
(λ, κ)-quasi-geodesic if for any subinterval [α, β] of [t0, t1],

1

λ
`
(
γ|[α,β]

)
− κ ≤ d (γ(α), γ(β)) ≤ λ`

(
γ|[α,β]

)
+ κ

where ` denotes the length of the curve.

Let γ1, γ2, γ3 be geodesic segments (parameterized by arc length) in X which
form a triangle ∆. As X is δ-hyperbolic for some δ, the triangle ∆ is δ-slim.
For a given (λ, κ)-quasi-isometry f : X → X ′, the curves f(γ1), f(γ2), f(γ3) are
quasi-geodesics in X ′. Since quasi-isometries do not distort distances too much,
one can find a constant ε1 (relying only on δ, λ, κ) for which f(∆) is a ε1-slim
triangle in X ′.

Now let γ′1, γ
′
2, γ
′
3 be geodesic segments in X ′ with the same endpoints as

f(γ1), f(γ2), f(γ3) (respectively). One can also find another constant ε2 (re-
lying only on δ, λ, κ) so that each f(γi) is contained in a neighborhood of radius
ε2 around γ′i.

ε1

Figure 4: Quasi-geodesic segments (dotted) are uniformly close to geodesic segments (solid) with
the same endpoints

In this way, with ∆′ ⊂ X ′ the triangle formed by these geodesics γ′i and with
δ′ = ε1 + ε2, we have that ∆′ is a δ′-slim triangle. Since δ′ relies only on δ, λ, κ,
it follows that X ′ is δ′-hyperbolic.

3 Hyperbolic Groups

Definition. For a group G with generating set S, if the Cayley graph ΓS(G) is
a hyperbolic geodesic metric space, then G is called a hyperbolic group.
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Hyperbolic groups do arise rather naturally. For example, every finite group is
hyperbolic as the Cayley graphs are bounded. Free groups are hyperbolic as the
Cayley graphs are trees (see Figure 2 for example), and subgroups of free groups
are hyperbolic since they are also free. More generally, finite index subgroups
of hyperbolic groups are themselves hyperbolic, but as Rips showed in 1982, the
same cannot be said about arbitrary subgroups (see [5]).

Before stating the main theorem of this note, which is also attributed to Rips
(see [3, Ch. 5,Thm. 2.3]), we first recall the notion of a group presentation.

Definition. Let F (S) be the free group with generating set S, and let R be a
(possibly infinite) set of words in F (S). The group G defined as the quotient
of F (S) by the normal subgroup generated by R is denoted G = 〈S|R〉, and we
call this notation a presentation for G. Elements of S are called generators for
G and elements of R are called relators. G = 〈S |R〉 is finitely presented if both
S and R are finite sets.

Remark. Presentations are not unique, and it is a notoriously difficult problem
in general to determine if two presentations define isomorphic groups. Hyper-
bolic groups comprise one such family of groups where this problem is actually
solvable (see [2, Ch. III.Γ.2]).

Theorem. Every hyperbolic group is finitely presented.

Proof. Let δ > 0, let G be a δ-hyperbolic group, and fix some finite generating
set S. Let dS be the word metric on G. For each k ∈ Z+, define

Bk := {g ∈ G : dS(g, 1) ≤ k}
Rk := {xyz : x, y, z ∈ Bk, xyz = 1 ∈ G} ∪ {xx−1 : x ∈ Bk}
Gk := 〈Bk | Rk〉.

Since B1 ⊆ B2 ⊆ · · · and R1 ⊆ R2 ⊆ · · · , we obtain the following sequence of
group homomorphisms

G1 G2 · · · G∞ = G
ϕ1 ϕ2

Our goal is to show that ϕN is an isomorphism for sufficiently large N , from
which it will follow that G = 〈BN | RN 〉. First, we show that each ϕk is
surjective. Choose g ∈ Bk+1 − Bk, so g = s1 · · · sk+1 for si ∈ S. Then there
exist x, y ∈ Bk (say x = s−1

k+1 and y = s−1
k · · · s

−1
1 ) such that xyg = 1 ∈ G.

Since x, y, g ∈ Bk+1, we have that xyg ∈ Rk+1.

To see injectivity, fix N � 2δ and suppose that xyz ∈ RN+1. We aim to show
that this relation can be deduced from RN , but x, y, z need not be in BN . To get
around this, we may choose x1, x2 ∈ BN such that x = x1x2 (called a splitting of
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x) and such that dS(x1, 1) > δ, dS(x2, 1) > δ, and dS(x, 1) = dS(x1, 1)+dS(x2, 1)
(called the canonical splitting of x). Then, adding the generator x and the
relation x1x2x

−1 to the presentation for GN , we get an equivalent presentation.
From here, we now show how to deduce xyz = 1 from the relations in BN .

(Case 1.) Suppose x, y ∈ BN and z ∈ BN+1 − BN . Choose a canonical splitting
z = z1z2 and let P be the point corresponding to the choice of z1

and z2. Since the geodesic triangle ∆ (in the Cayley graph ΓS(G))
with vertices 1, x, xy is δ-thin, there exists a point Q on one of the
other edges that is within δ of P - without loss of generality, suppose
Q ∈ [1, x]. Then the geodesic [P,Q] and the geodesic [Q, xy] divide
∆ into three smaller triangles, all with sides of length at most N . It
follows then that the relation xyz1z2 = 1 can be deduced from three
relations in RN .

P
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z2

Q

1

x

xy

P

x1

x2
z1

z2

Q

1

x

xy

Figure 5: Partitioning ∆ in Case 1 and Case 2, respectively

(Case 2.) Suppose y, z ∈ BN+1 − BN . By Case 1, assume all true relations of
the form abc = 1 for a, b ∈ XN and c ∈ XN+1. Once again, choose a
canonical splitting z = z1z2 as above, and proceed similarly. Here, if
Q lies on an edge of length N+1, then it corresponds to some splitting
of either x or y - suppose x = x1x2 (which we can assume as both x1

and x2 have lengths at most N). Once again, we divide the triangle
∆ into three smaller triangles. With this division, it’s possible that
one of the triangles has a single side of length N + 1. However, all of
the other geodesic segments have length at most N , so by Case 1, we
are done

Similar arguments apply to the relations of the form xx−1, x ∈ BN+1−BN , thus
completing the proof.
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