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ABSTRACT

In the 1980’s, Gromov and Piatetski-Shapiro introduced a technique called “hybridiza-
tion” which allowed them to produce non-arithmetic hyperbolic lattices from two non-
commensurable arithmetic lattices. It has been asked whether an analogous hybridization
technique exists for complex hyperbolic lattices, because certain geometric obstructions make
it unclear how to adapt this technique. This thesis explores one possible construction (origi-
nally due to Hunt) in depth and uses it to produce arithmetic lattices, non-arithmetic lattices,
and thin subgroups in SU(2, 1).
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Chapter 1

Introduction

This thesis largely aims to explore a certain class of discrete groups, which we call hybrid
subgroups, of the group of complex hyperbolic isometries PU(n, 1).

The theory of discrete subgroups of (semisimple) Lie groups is very rich (see [Mar91]
or [Rag72] for some standard texts). To a semisimple Lie group G, we can associate a
symmetric space X (a smooth manifold with the property that, for every p ∈ X, there is an
involutive isometry of X with p as an isolated fixed point) on which G acts both transitively
and by isometries. For a torsion-free discrete subgroup Γ of G, the quotient space Γ\X is
again a smooth manifold and the geometric structure of this quotient is inherited from the
structure determined by G and X. In this way, there is a natural correspondence between
the algebraic structure of discrete subgroups of G and the possible manifolds that can be
endowed with a given geometric structure (determined by G and X). When Γ has torsion,
the quotient is no longer a manifold (instead, we call it an orbifold), but for the most part
this is only a minor technicality.

One may coarsely sort discrete subgroups by covolume (that is, volume of the coset space
G/Γ with respect to the Haar measure, or equivalently, the volume of Γ\X). For infinite
covolume discrete groups, there may be deformations – continuous families of discrete faithful
representations ρt : Γ → G that are pairwise non-conjugate – and the deformation theory
is very well-developed. For example, see [Kra69] and [Kra71] for deformations of Fuchsian
groups, the survey [And98] for deformations of Kleinian groups, and [KT92] for deformations
of (G,X) structures.

Beyond the deformation theory, there has also been renewed interest in a particular
family of infinite covolume discrete groups called thin groups (these are contained a finite
covolume discrete subgroups and are Zariski-dense in G) thanks to Sarnak [Sar14] for use
in “superstrong approximation theory” which is a far-reaching generalization of the Chinese
Remainder Theorem in the context of Cayley graphs. From the perspective of deforma-
tions, we expect that thin groups are, in some sense, ubiquitous, although codifying this
notion precisely is still unclear (see [Fuc14]) and constructing examples has proven chal-
lenging. Remarkably, there has been considerable success in producing examples of thin
subgroups using techniques from hyperbolic geometry (see, for example, [LR14] or discus-
sions in [Nik87]), and the hybrid technique introduced in Chapter 3 successfully produce an
example as well, although it is an open question as to the necessary conditions for producing
more thin hybrids.
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In the case that Γ has finite covolume, we say Γ is a lattice, and the deformation story
is quite different. When G is a simple Lie group not locally isomorphic to SL(2,R), the
celebrated rigidity theorems due to Mostow [Mos73] (in the the case where Γ\G is compact)
and Prasad [Pra73] (the non-cocompact case) tell us that for a lattice Γ < G, all discrete
faithful representations ρ : Γ → G with finite covolume image are conjugate. In particular,
for the case of real hyperbolic manifolds of dimension n > 2, these results imply that the
geometric structure of the hyperbolic manifold is uniquely determined by the volume. As a
result of this rigidity, it is a challenge to produce interesting lattices.

In [BHC62] Borel and Harish-Chandra prove that every simple Lie group G contains a
lattice, and they give a construction of such a lattices that generalizes the standard example
of SL(n,Z) in SL(n,R). Lattices that arise in this way are called arithmetic, and due to
Margulis’ arithmeticity theorem [Mar84], there is a strong sense in which most lattices are
arithmetic. Specifically, this theorem says that if G has real rank at least 2 (that is, the
associated symmetric space contains an isometrically embedded copy of Rn for n ≥ 2), then
all irreducible lattices are arithmetic. As such, up to a compact factor, the only simple
Lie groups which can contain a non-arithmetic lattice are SO(n, 1), SU(n, 1), Sp(n, 1), and
F4. In fact, Gromov and Schoen [GS92] showed that Sp(n, 1) contains only arithmetic
lattices, and Corlette [Cor92] showed that F4 also contains only arithmetic lattices. Due to
their exceptional nature, an even bigger challenge is to find these non-arithmetic lattices in
SO(n, 1) and SU(n, 1).

In SO(n, 1), the corresponding symmetric space is real hyperbolic space Hn
R, and some

of the earliest examples of nonarithmetic lattices in SO(n, 1) were produced by Vinberg in
[Vin67] (see also [Nik87]), and the results extended into higher dimensions in [Vin15]. These
groups are generated by reflections in the walls (that is, totally geodesic real hyperplanes)
of hyperbolic polytopes. Takeuchi [Tak77] later classified all possible triangle groups (dis-
crete groups generated by reflections in the sides of a hyperbolic triangle) by arithmeticity.
More generally, Gromov and Piatetski-Shapiro [GPS87] introduced a technique called “in-
terbreeding” or “hybridization” for producing non-arithmetic lattices in every dimension n
from two non-commensurable arithmetic groups in SO(n, 1) (two groups Γ1,Γ2 < G are
commensurable if there exists a g ∈ G for which Γ1 ∩ g−1Γ2g has finite index in both Γ1

and gΓ2g
−1). In a sense, all known nonarithmetic lattices in SO(n, 1) are produced using

geometric techniques.
In SU(n, 1), the associated symmetric space is complex hyperbolic space Hn

C, and in a
stark contrast with the real hyperbolic setting, very little is known about nonarithmetic
lattices (see [Par09] for a survey of complex hyperbolic lattices). One reason for this is
that the geometric techniques from real hyperbolic space do not carry over naturally to
complex hyperbolic space: Hn

C does not contain any totally geodesic real hypersurfaces, and
so techniques involving reflections in or gluing along these hypersurfaces have no natural
analog (in particular, this means there is no obvious analog to the Gromov–Piatetski-Shapiro
construction).

The first examples of nonarithmetic lattices in SU(2, 1) were produced by Picard [Pic85]
among a list of 27 lattices constructed from monodromy groups of hypergeometric functions.
Although arithmeticity was not a consideration in Picard’s time, 7 of these lattices are
non-arithmetic and their arithmeticity was determined by Deligne and Mostow [DM86]. In
[Mos80], Mostow produced 7 new examples of non-arithmetic lattices in SU(2, 1) by consid-
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ering groups generated by three complex reflections (these are analogous to triangle groups
in SO(2, 1)), and Deraux, Falbel, and Paupert in [DFP05] re-examined these groups to find
simpler fundamental domains. In a construction similar to that of Mostow, Deraux–Parker–
Paupert [DPP16a] and [DPP16b] produced several new examples of non-arithmetic lattices
in SU(2, 1). As well, they examined the commensurability of all new and previously known
non-arithmetic lattices in SU(2, 1), ultimately determining that they fall into 22 commen-
surability classes. In SU(3, 1), Deligne–Mostow [DM86] produce a single non-arithmetic
lattice amidst their treatment of Picard’s construction, and recently Deraux [Der17] found a
single non-arithmetic lattice in SU(3, 1) among lattices produced by Couwenberg–Heckman–
Looijenga [CHL05] (which generalizes the earlier work of Deligne–Mostow) and determined
that it was not commensurable to the Deligne–Mostow lattice. There are no known examples
of non-arithmetic lattices in SU(n, 1) for n > 3, and it’s unknown if they can exist at all.
One possible approach to resolving this question is to find a suitable hybrid construction in
the spirit of Gromov–Piatetski-Shapiro, and indeed this is the main aim of this writing.

This thesis is organized as follows:
Chapter 2 provides a background of the relevant information from complex hyperbolic

geometry and arithmetic groups. The information contained in this chapter is completely
standard, and one can see [Gol99] or [Par03] for a more complete treatment of complex
hyperbolic geometry and [Mor15] for arithmetic groups. We also summarize the strategy of
Gromov and Piatetski-Shapiro to motivate a candidate hybrid construction, originally due
to Hunt (see the references in [Pau12]) for SU(n, 1) and explore it further in the subsequent
chapters.

Chapter 3 explores hybrid subgroups in some of the Picard modular groups, SU(2, 1;Od)
(where Od is the ring of integers for the imaginary quadratic number field Q(i

√
d)) which

are among the simplest arithmetic lattices in SU(2, 1). The main result of this chapter is
that both thin subgroups and lattices can arise as the product of his hybrid construction.
Because it is joint work with Julien Paupert and has been submitted for review as of the
time of this writing, this chapter is a faithful reproduction of that paper (with only minor
formatting changes to adhere to guidelines).

Chapter 4 gives an introduction to Mostow’s lattice construction and further explores
hybrid subgroups within a certain subset of these lattices (specifically, within Mostow’s
lattices of “small phase shift”, which is defined precisely later). The main result in this
chapter is that all of Mostow’s small phase shift lattices can be recovered via a hybrid
construction. Surprisingly, some of these non-arithmetic lattices arise as hybrids of non-
commensurable arithmetic groups.

Chapter 5 proposes some future directions and demonstrates partial progress made to-
wards these goals. In particular, we examine hybrids in other non-arithmetic lattices in
SU(2, 1), namely those of Deraux–Parker–Paupert. We also discuss the hybrid construction
in higher dimensions, where the “intersection condition” of the construction becomes non-
trivial. In particular, we demonstrate the possible necessity of this condition by using the
Gauss-Picard and Eisenstein-Picard lattices to produce a non-discrete subgroup in SU(3, 1)
when the condition is relaxed.



Chapter 2

Background

2.1 Complex hyperbolic geometry

The material contained within this section is completely standard; see for example [Gol99]
or [Par03].

2.1.1 Complex hyperbolic space

Let H be a Hermitian matrix of signature (n, 1) and let Cn,1 denote Cn+1 endowed with the
Hermitian form 〈·, ·〉H given by

〈x, y〉H = y∗Hx.

(we will omit the subscript when the Hermitian form is clear from context). Let V− denote
the set of points z ∈ Cn,1 for which 〈z, z〉 < 0, and let V0 denote the set of points for which
〈z, z〉 = 0 (visually, V0 forms the light cone in Figure 2.1, and V− is the interior of this cone).

Given the usual projectivization map P : Cn,1−{0} → CPn, complex hyperbolic n-space,
denoted Hn

C, is P(V−) with distance d coming from the Bergman metric

cosh2

(
1

2
d(P(x),P(y))

)
=
〈x, y〉〈y, x〉
〈x, x〉〈y, y〉

(2.1)

The ideal boundary ∂∞Hn
C is then identified with P(V0).

V−
V0

Figure 2.1: Visualization of Subsets V− and V0 in Cn,1

4
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The choice of Hermitian form gives rise to different geometric models. When

H =

(
In×n 0

0 −1

)
we obtain the ball model. By normalizing the last coordinate of a point z = [z1, . . . , zn, 1] ∈
Hn

C, we have

〈z, z〉 < 0⇔ |z1|2 + · · ·+ |zn|2 < 1

and thus we can identify Hn
C with the open unit ball in Cn and ∂∞Hn

C with the boundary
(2n− 1)-sphere. When

H =

0 0 1
0 I(n−1)×(n−1) 0
1 0 0


one obtains the Siegel model. By normalizing the last coordinate of a point z = [z1, . . . , zn, 1]
in Hn

C, we have

〈z, z〉 < 0⇔ 2 Re(z1) + |z2|2 + · · ·+ |zn|2 < 0

and thus we identify Hn
C with the convex domain in the interior of the paraboloid given by

2 Re(z1) + |z2|2 + · · ·+ |zn|2 = 0, and ∂∞Hn
C is identified with the boundary paraboloid along

with a distinguished point at infinity, p∞ = [1, 0, 0] ∈ CPn. For a given point z in the Siegel
model of Hn

C, let t ∈ R and u ∈ R+ such that

z =

[
−|z2|2 − · · · − |zn|2 − u+ it

2
, z2, . . . , zn, 1

]
.

In this way we can identify Hn
C with Cn−1 × R × R+ and coordinates (z2, . . . , zn, t, u); the

boundary ∂∞Hn
C is identified with (Cn−1 × R × {0}) ∪ {p∞}. These coordinates, called

horospherical coordinates, provide us with a natural analog of the half space model of real
hyperbolic space.

2.1.2 Complex Hyperbolic Isometries

Just as in real hyperbolic space, any holomorphic isometry of Hn
C can be classified as one

of the following three types depending on its fixed point(s). Specifically, a holomorphic
isometry is:
• elliptic if it has a fixed point in Hn

C.
• parabolic if it has exactly one fixed point in the boundary (and no fixed points in Hn

C).
• loxodromic if it has exactly two fixed points in the boundary (and no fixed points in

Hn
C).

Given a vector v ∈ Cn,1 with 〈v, v〉 = 1 and complex number ζ with unit modulus, the linear
map

Rv,ζ(x) : x 7→ x+ (ζ − 1)〈x, v〉v
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descends to an elliptic isometry of Hn
C called a complex reflection. We note that, unlike

reflections in real hyperbolic geometry, the choice of ζ introduces an added degree of freedom
in complex reflections, and as such complex reflections may take on any order.

Let U(n, 1) denote the group of unitary matrices preserving the Hermitian form on Cn,1,
that is

U(n, 1) := {A ∈ GL(n+ 1,C) : ∀x, y ∈ Cn,1, 〈Ax,Ay〉 = 〈x, y〉}.

It is clear from the definition of the metric in Equation 2.1 that U(n, 1) acts on Hn
C by

holomorphic isometries and that scalar matrices act trivially. It is a fact that the holomorphic
isometry group of Hn

C is exactly PU(n, 1) := U(n, 1)/U(1), and the full isometry group is
generated by PU(n, 1) and the antiholomorphic involution z 7→ z (conjugation after lifting
to a vector in Cn,1). Given a matrix A ∈ U(n, 1) representing a complex hyperbolic isometry,
Chen and Greenberg [CG74] gave a classification of the isometries:

Theorem 1 (Theorem 3.4.1 of [CG74]). Let g be an isometry of Hn
C and let Ag be a lift of

g into U(n, 1).

1. g is elliptic if and only if Ag is semisimple and all of its eigenvalues have norm 1.

2. g is parabolic if and only if Ag is not semisimple and all of its eigenvalues have norm
1.

3. g is loxodromic if and only if Ag is semisimple and has exactly n− 1 many eigenvalues
of norm 1.

We also say that g as above is a hyperbolic isometry if it is loxodromic and there exists
a lift Ag in U(n, 1) for which all eigenvalues of Ag are real.

2.1.3 Totally geodesic subspaces

A Ck-plane (or a C-line when k = 1) is projective k-dimensional subspace of CPn that
intersects Hn

C, and this intersection is isometrically a copy of Hk
C ⊂ Hn

C. A vector v ∈ Cn,1

orthogonal to a Cn−1-plane is called a polar vector, and each Cn−1-plane is the fixed point
locus of a complex reflection Rv,ζ for some ζ. An Rk-plane is a projective totally real
subspace of CPn that intersects Hn

C. Every Rn-plane is the fixed point set of a (unique)
anti-holomorphic involution called a real reflection.

Theorem 2 (Section 3.1.11 in [Gol99]). Every totally geodesic submanifold in Hn
C is either

a Ck plane or an Rk-plane, for 0 ≤ k ≤ n.

This implies that Hn
C has no totally geodesic real hypersurfaces. In particular, the bound-

ary of a complex hyperbolic manifold is not itself a totally geodesic complex hyperbolic
manifold.
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2.2 Discrete subgroups of Lie groups

For a connected semisimple Lie group G, one can take a maximal compact subgroup K to
construct the associated symmetric space X = G/K on which G acts transitively and by
isometries (see [Hel01] for a standard reference on symmetric spaces). A subgroup Γ of G
is discrete if it inherits the discrete topology, and such a discrete group is a lattice if Γ\X
has finite volume. Following Sarnak [Sar14], a discrete subgroup ∆ of a lattice Γ is thin if
∆\X has infinite volume but ∆ and Γ have the same Zariski-closure in G. We say that Γ is
cocompact if Γ\X is compact, and Γ is non-cocompact otherwise. Two subgroups Γ1,Γ2 < G
are called commensurable if there exists a g ∈ G for which Γ1 ∩ gΓ2g

−1 has finite index in
both Γ1 and gΓ2g

−1 (in some literature, this is referred to as commensurable in the wide
sense, but we will have no need for such a distinction). Commensurability is an equivalence
relation and cocompactness is a commensurability-invariant.

One key property in the study of lattices is that of arithmeticity (see [Mor15] for a stan-
dard reference), which is also a commensurability-invariant. Before defining arithmeticity,
we give an intermediate definition:

Definition. Let H be a closed subgroup of SL(n,R) with only finitely-many components
and let H◦ denote the identity component. If there exists Q ⊂ Q[x1,1, . . . , xn,n] such that (1)
the variety Var(Q) is a subgroup of SL(n,R) and (2) H◦ = Var(Q)◦, then we say that H is
an algebraic group defined over Q.

Definition. Γ is an arithmetic subgroup of G if and only if there exist

• a closed, connected, semisimple subgroup G′ of some SL(n,R) that is defined over Q,

• compact normal subgroups K and K ′ of G◦ and G′, respectively,

• an isomorphism ϕ : G◦/K → G′/K ′,

such that ϕ(Γ ∩G◦) ∩ G′ ∩ SL(n,Z) has finite index in both ϕ(Γ ∩G◦) and G′ ∩ SL(n,Z)
(here an overline denotes the images of the respective groups in the appropriate quotient
groups).

Example 3. It is clear from the definition that SL(n,Z) is an arithmetic lattice in SL(n,R).
In particular, when n = 2, we obtain the modular group, which acts on the upper half-plane
model of H2

R by Möbius transformations. It is easily seen that any unipotent upper triangular
matrix fixes the point at infinity, and so choosing a fundamental domain that includes this
point (as in Figure 2.2), one readily sees that the quotient is non-compact (hence SL(2,Z)
is a non-cocompact lattice).

In fact, the existence of unipotent elements is exactly a test for cocompactness of a lattice:

Theorem 4 (Godement’s compactness criterion, Prop 5.3.1 in [Mor15]). Let G < SL(n,R)
be defined over Q. Then G∩ SL(n,Z) is non-cocompact if and only if G∩ SL(n,Z) contains
a (nontrivial) unipotent element.

Similar to the example of SL(n,Z) in SL(n,R), Borel and Harish-Chandra further showed
that arithmetic lattices exist in all (real) linear algebraic groups.
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Theorem 5 (Theorem 1 of [BHC62]). Let G < GL(n,C) be defined over Q. Then G ∩
GL(n,Z) is a lattice in G ∩GL(n,R).

Example 6. Given Od, the ring of integers for the imaginary quadratic number field Q(i
√
d),

the Picard modular groups SU(n, 1;Od) are arithmetic lattices in SU(n, 1). Let {1, τ} be a
Z-basis for Od and consider the following R-algebra embedding of C into M(2,R):

ResC/R : C→M(2,R)

(x+ iy) 7→
(

1 1
2
(τ + τ)

0 1
2
(τ − τ)

)−1(
x −y
y x

)(
1 1

2
(τ + τ)

0 1
2
(τ − τ)

)
In this way, we exactly have that ResC/R(Od) = ResC/R(C) ∩M(2,Z). This map extends to
a map from GL(n,C) into GL(2n,R) by applying ResC/R at each matrix entry, and thus

ResC/R(SU(n, 1;Od)) = ResC/R(SU(n, 1)) ∩GL(2n,Z).

Since SU(n, 1) is a linear algebraic group defined over Q, the result follows from the pre-
vious theorem of Borel–Harish-Chandra. These lattices also contain non-identity unipotent
elements, and are non-cocompact by Godement’s compactness criterion.

Checking arithmeticity in practice often requires the use of some commensurability in-
variants. One such invariant is the adjoint trace field, Q(Tr Ad Γ), where Ad : Γ → GL(g)
is the adjoint representation and Tr Ad Γ = {Tr Ad(γ) : γ ∈ Γ}. The following lemma
provides a criterion that is well-suited for checking arithmeticity of lattices in SU(n, 1).

Lemma 7 (Lemma 4.1 in [Mos80]). Let E/F be an imaginary quadratic extension of a totally
real number field, and let H = (hij) be a Hermitian matrix of signature (n, 1) with coefficients
in E. A lattice Γ < SU(H,OE) is arithmetic if and only if, for every ϕ ∈ Gal(E/Q):

1. ϕ(hij) = ϕ(hij), and

2. if ϕ does not restrict to the identity on Q(Tr Ad Γ), then ϕH = (ϕ(hij)) has signature
(n+ 1, 0) or (0, n+ 1).

In a very strong sense, most lattices are arithmetic. Given a simple Lie group G, Margulis
[Mar84] showed that non-arithmetic lattices can only exist when G has real rank 1; that is,

−2 −1 1 2

i

2i

−2 −1 1 2

i

2i

Figure 2.2: Fundamental Domain for the Action of SL(2,Z) on H2
R.
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M1 = Hn
R/Γ1 M2 = Hn

R/Γ2

M12 = Hn−1
R /Γ12M12 = Hn−1
R /Γ12

Hybrid M = Hn
R/Γ

Figure 2.3: M12 Does Not Separate

M1 = Hn
R/Γ1 M2 = Hn

R/Γ2

M12 = Hn−1
R /Γ12M12 = Hn−1
R /Γ12

Hybrid M = Hn
R/Γ

Figure 2.4: M12 Separates

up to finite index, G = Isom(X) for a hyperbolic space X. Moreover, the combined work of
Gromov–Schoen [GS92] and Corlette [Cor92] implies that non-arithmetic lattices can only
exist when X = Hn

R or X = Hn
C. Due to their exceptional nature, it is a major challenge to

find non-arithmetic lattices in real and complex hyperbolic isometry groups.

Real hyperbolic lattices and their arithmetic properties have been very extensively stud-
ied; see [MR03] and the references therein for a rather comprehensive resource. Notably,
Gromov and Piatetski-Shapiro in [GPS87] showed the existence of non-arithmetic lattices
in every dimension via a particular construction that they call “interbreeding” (also called
“hybridization”).

To contrast, very little is known about complex hyperbolic lattices, especially non-
arithmetic lattices. At present, non-arithmetic examples are only known in dimensions 2
and 3 (see [Par09], [Der17]), and it is an open question as to whether or not they exist at all
in higher dimensions.

2.3 Gromov–Piatetski-Shapiro hybrids

The Gromov–Piatetski-Shapiro (GPS) hybridization construction introduced in [GPS87] is
as follows: Begin with two arithmetic lattices Γ1,Γ2 in PO(n, 1) with common sublattice
Γ12 ≤ PO(n − 1, 1) (for simplicity in exposition, we’ll assume these lattices are all torsion-
free). Geometrically, this yields two finite-volume hyperbolic manifolds Mi = Hn

R/Γi each
containing totally geodesic submanifolds isometric to M12 = Hn−1

R /Γ12. Cut and glue (a
single connected component of) M1 −M12 and M2 −M12 along M12 to obtain the hybrid
manifold M = M1tM12M2. Since M12 is totally geodesic, the metric is still well-defined (and
hyperbolic) at the glue locus, so M = Hn

R/Γ is a finite-volume hyperbolic manifold, and the
resulting lattice Γ is the hybrid lattice. Algebraically, Γ is the amalgamated free product
Γ1 ∗Γ12 Γ2, and in particular, Γ is generated by Γ1 and Γ2. Figures 2.3 and 2.4 provide a
geometric visualization for the construction.
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2.4 Complex hyperbolic hybrid construction

The lack of totally geodesic real hypersurfaces in Hn
C poses an issue to find a suitable complex-

hyperbolic analog to the GPS construction. Hunt proposed one possible analog (see the
references contained within [Pau12]) where one starts with two arithmetic lattices Γ1,Γ2 in
PU(n, 1), embeddings ιi : PU(n, 1) ↪→ PU(n + 1, 1), and totally geodesic hypersurfaces Σ1

and Σ2 such that

1. Σ1 and Σ2 are orthogonal,

2. ιj(Γj) stabilizes Σj, and

3. ι1(Γ1) ∩ ι2(Γ2) is a lattice in PU(n− 1, 1).

The resulting hybrid subgroup is then H(Γ1,Γ2) := 〈ι1(Γ1), ι2(Γ2)〉.
As Paupert [Pau12] showed, hybrids in PU(2, 1) may be non-discrete. As further explored

by Paupert and the author in Chapter 3 ([PW18]), even accounting for discreteness does not
guarantee that the resulting subgroup is a lattice or an amalgamated free product as in the
GPS construction.

With this in mind, we present a slightly more general and flexible notion of a hybrid.

Definition. Let Γ1,Γ2 < PU(n, 1) be lattices. We define a hybrid of Γ1,Γ2 to be any group
H(Γ1,Γ2) generated by discrete subgroups Λ1,Λ2 < PU(n+ 1, 1) stabilizing totally geodesic
hypersurfaces Σ1,Σ2 (respectively) such that

1. Σ1 and Σ2 are orthogonal,

2. Γi = Λi|Σi
, and

3. Λ1 ∩ Λ2 is a lattice in PU(n− 1, 1).

Remark. With this new definition, the resulting hybrid is not unique. In particular, given
any Λi as above and any non-identity A ∈ PU(n + 1, 1) − Λi fixing Σi pointwise, we have
Γi = Λi|Σi

= 〈Λi, A〉|Σi
.

Remark. The hybrids explored in [Pau12] and [PW18] are still hybrids in this new sense as
well, taking Λj = ιj(Γj).



Chapter 3

Hybrid lattices and thin subgroups of
Picard modular groups

The following chapter explores hybrid subgroups in the context of some well-known arith-
metic lattices in PU(2, 1), the Picard modular groups. This chapter is joint work with Julien
Paupert and, at present, is in review for publication. With his permission, it has been faith-
fully reproduced with only minor modifications to meet formatting guidelines. It should
also be noted that the presentation attributed to Mark–Paupert [MP17] in Section 3.5 for
PU(2, 1;O7) is missing a relation; our result is unaffected by this fact.

Abstract

We consider a certain hybridization construction which produces a subgroup of PU(n, 1) from

a pair of lattices in PU(n − 1, 1). Among the Picard modular groups PU(2, 1,Od), we show that

the hybrid of pairs of Fuchsian subgroups PU(1, 1,Od) is a lattice when d = 1 and d = 7, and a

geometrically infinite thin subgroup when d = 3, that is an infinite-index subgroup with the same

Zariski-closure as the full lattice.

3.1 Introduction

Lattices in rank 1 real (semi)simple Lie groups are still far from understood. A key notion
is that of arithmetic lattice which we will not define properly here but note that by a famous
result of Margulis a lattice in such a Lie group is arithmetic if and only if it has infinite index
in its commensurator.

Margulis’ celebrated arithmeticity theorem states that every lattice of a simple real Lie
group G is arithmetic whenever the real rank of G is at least two. Thus non-arithmetic
lattices can only exist in real rank one, that is when the associated symmetric space is
a hyperbolic space. In real hyperbolic space, where the Lie group is PO(n, 1), Gromov
and Piatetski-Shapiro produced in [GPS87] a construction yielding non-arithmetic lattices
in PO(n, 1) for all n > 2 (see below for more details), in fact producing in each dimension
infinitely many non-commensurable lattices, both cocompact and non-cocompact. In quater-
nionic hyperbolic spaces (and the Cayley octave plane), work of Corlette and Gromov-Schoen
implies as in the higher rank case that all lattices are arithmetic.

11
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The case of complex hyperbolic spaces, where the associated Lie group is PU(n, 1), is
much less understood. Non-arithmetic lattices in PU(2, 1) were first constructed by Mostow
in 1980 in [Mos80], and subsequently by Deligne-Mostow and Mostow as monodromy groups
of certain hypergeometric functions in [DM86] and [Mos86], following pioneering work of
Picard. More recently, Deraux, Parker and the first author constructed new families of
non-arithmetic lattices in PU(2, 1) by considering groups generated by certain triples of
complex reflections (see [DPP16a], [DPP16b]). Taken together, these constructions yield 22
commensurability classes of non-arithmetic lattices in PU(2, 1), and only 2 commensurability
classes in PU(3, 1). The latter two are noncocompact; one is a Deligne-Mostow lattice and the
other was constructed by Couwenberg-Heckman-Looijenga in 2005 and recently found to be
non-arithmetic by Deraux, [Der17]. Major open questions in this area remain the existence
of non-arithmetic lattices in PU(n, 1) for n ≥ 4, as well as the number (or finiteness thereof)
of commensurability classes in each dimension.

The Gromov–Piatetski-Shapiro construction, which they call interbreeding of 2 arithmetic
lattices (now often referred to as hybridization), produces a lattice Γ < PO(n, 1) from
2 lattices Γ1 and Γ2 in PO(n, 1) which have a common sublattice Γ12 < PO(n − 1, 1).
Geometrically, this provides two hyperbolic n-manifolds V1 = Γ1\Hn

R and V2 = Γ2\Hn
R with

a hyperbolic (n− 1)-manifold V12 which is isometrically embedded in V1 and V2 as a totally
geodesic hypersurface. This allows one to produce the hybrid manifold V by gluing V1−V12

and V2 − V12 along V12 (more precisely, in case V12 separates V1 and V2, by gluing V +
1 − V12

and V +
2 −V12 along V12, with V +

i a connected component of Vi−V12). The resulting manifold
is also hyperbolic because the gluing took place along a totally geodesic hypersurface, and
its fundamental group Γ is therefore a lattice in PO(n, 1). The main point is then that if Γ1

and Γ2 are both arithmetic but non-commensurable, their hybrid Γ is non-arithmetic. Note
that the resulting hybrid Γ is algebraically an amalgamated free product of Γ1 and Γ2 over
Γ12 (say, in the case where V12 separates both V1 and V2), and in all cases is generated by
its sublattices Γ1 and Γ2.

It is not straightforward to adapt this construction to construct lattices in PU(n, 1),
the main difficulty being that there do not exist in complex hyperbolic space any totally
geodesic real hypersurfaces. In fact, it has been a famous open question since the work of
Gromov–Piatetski-Shapiro to find some analogous construction in PU(n, 1). Hunt proposed
the following construction (see [Pau12] and references therein). Start with 2 arithmetic
lattices Γ1 and Γ2 in PU(n, 1), and suppose that one can embed them in PU(n + 1, 1) in
such a way that (a) each stabilizes a totally geodesic Hn

C ⊂ Hn+1
C (b) these 2 complex

hypersurfaces are orthogonal, and (c) the intersection of the embedded Γi is a lattice in
the corresponding PU(n − 1, 1). The resulting hybrid Γ = H(Γ1,Γ2) is then defined as the
subgroup of PU(n+ 1, 1) generated by the images of Γ1 and Γ2. (See the end of Section 3.2
for a more detailed and concrete description when n = 2).

It is not clear when, if ever, such a group has any nice properties. One expects in general
the hybrid group to be non-discrete, and in fact the first author showed in [Pau12] that this
happens infinitely often among hybrids in PU(2, 1) of pairs of Fuchsian triangle subgroups
of PU(1, 1). It was observed there that one can easily arrange for the hybrid to be discrete
by arranging for the two subgroups Γ1,Γ2 to already belong to a known lattice. But even
in the simplest case of arithmetic cusped lattices (where the matrix entries are all in Od,
the ring of integers of Q[i

√
d] for some squarefree d ≥ 1), it was not known whether the
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discrete hybrid Γ could ever be a sublattice of the corresponding Picard modular group
Γ(d) = PU(2, 1,Od), as opposed to an infinite-index (discrete) subgroup of Γ(d). Following
Sarnak ([Sar14]) we will call thin subgroup of a lattice Γ any infinite-index subgroup having
the same Zariski-closure as Γ.

In this note we show that in fact both behaviors can occur, even among this simplest
class of hybrids of sublattices of the Picard modular groups Γ(d). More precisely, we consider
for d = 3, 1, 7 the hybrid subgroup H(d) defined as the hybrid of two copies of SU(1, 1,Od)
inside the Picard modular group PU(2, 1,Od) (when d = 7 we consider in fact for simplicity
the hybrid of two copies of U(1, 1,O7)). These specific values of d are those for which a
presentation of PU(2, 1,Od) is known (by [FP06], [FFP11] and [MP17]). Our main results
can be summarized as follows (combining Theorems 12, 23, and 26 and Propositions 28 and
29).

Theorem 8. 1. The hybrid H(3) is a thin subgroup of the Eisenstein-Picard lattice PU(2, 1,O3).
It has full limit set ∂∞H2

C ' S3 and is therefore geometrically infinite.

2. The hybrid H(1) has index 2 in the Gauss-Picard lattice PU(2, 1,O1).

3. The hybrid H(7) is the full Picard lattice PU(2, 1,O7).

Remark. (a) We also give analogous results for two related hybrids H ′(3) and H ′(1) in
Corollaries 20 and 24. In terms of Fuchsian triangle groups these groups are defined
as the hybrids of two copies of the (orientation-preserving) triangle groups (2, 6,∞)
and (2, 4,∞) respectively, as opposed to (3,∞,∞) ' PU(1, 1,O3) and (2,∞,∞) '
PU(1, 1,O1) (so, replacing the elliptic generator by one of its square roots). An in-
teresting feature of H ′(3) is that it has infinite index in its normal closure in Γ(3),
whereas all other hybrids we consider are normal in Γ(d).

(b) In all cases we also show that the hybrid Γ is not an amalgamated free product of Γ1

and Γ2 over their intersection. In case Γ is itself a lattice this follows from general
considerations of cohomological dimension, and for H(3) and H ′(3) we show this by
finding sufficiently many relations among the generators for Γ, see Corollary 15.

(c) One of the main geometric difficulties in analyzing these groups is understanding the
parabolic subgroups. By construction the generators contain a pair of (opposite)
parabolic isometries (as well as an elliptic isometry when d = 3, two elliptic isometries
when d = 1, and two elliptic and two loxodromic isometries when d = 7), however it
seems hard in general to determine the rank of the parabolic subgroups of the hybrid.
In the cases where the hybrid is a lattice we obtain indirectly that the parabolic sub-
groups must have full rank, but in the thin subgroup case we do not know what this
rank is.

(d) The parabolic isometries appearing in the generators for our hybrids are by construction
vertical Heisenberg translations, since they preserve a complex line (see Section 3.2).
It turns out that Falbel ([Fal08]) and Falbel-Wang ([FW14]) studied a group formally
similar to our hybrid H(3), obtained by completely different methods, namely by
finding all irreducible representations of the figure-eight knot group Γ8 into PU(2, 1)
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with unipotent boundary holonomy. Falbel showed in [Fal08] that there are exactly
3 such representations, one of which has image contained in Γ(3) = PU(2, 1,O3) and
the two others in Γ(7) = PU(2, 1,O7). These are all generated by a pair of opposite
horizontal Heisenberg translations. The image of the former representation is shown
in [Fal08] and [FW14] to be, like our hybrids H(3) and H ′(3), a thin subgroup of Γ(3)
with full limit set, whereas the images of the latter two representations are shown in
[DF15] to have non-empty domain of discontinuity (and hence have infinite index in
Γ(7)). We were inspired by some of the arguments of [Fal08] and [FW14].

(e) Kapovich found in [Kap98] the first examples of infinite-index normal subgroups of
lattices in PU(2, 1), among a family of four lattices first constructed by Livné in his
thesis (and predating the term thin subgroup). Parker showed in [Par06] (sections 6
and 7) that this description could be extended to the Eisenstein-Picard modular group
PU(2, 1,O3), and that some of Kapovich’s results extended to that case as well. It was
shown to us by an anonymous referee that our hybrid H(3) is in fact commensurable
to the infinite-index normal subgroup of PU(2, 1,O3) obtained in this way.

(f) Discrete groups generated by opposite parabolic subgroups have been studied in higher
rank by Oh, Benoist-Oh and others. A conjecture of Margulis states that if G is
a semisimple real algebraic group of rank at least 2 and Γ a discrete Zariski-dense
subgroup containing irreduclble lattices in two opposite horospherical subgroups, then
Γ is an arithmetic lattice in G. Oh showed in [Oh98] that this holds when G is a split
real Lie group, Benoist-Oh extended this in [BO10] to the case of G = SL(3,R), and
very recently Benoist-Miquel treated the general case in [BM18].

The paper is organized as follows. In section 2 we review basic facts about complex
hyperbolic space, its isometries, subspaces and boundary at infinity. In Sections 3,4,5 we
consider each of the hybrids H(3), H(1) and H(7) respectively. In section 6 we review
and apply basic facts about limit sets and geometrical finiteness to the non-lattice hybrid
H(3). We would like to thank Elisha Falbel for pointing out a simplification of the proof of
Theorem 12, and an anonymous referee for several useful comments.

3.2 Complex hyperbolic Space, isometries and bound-

ary at infinity

We give a brief summary of basic definitions and facts about complex hyperbolic geometry,
and refer the reader to [Gol99], [CG74] or [Par03] for more details.

3.2.1 Projective models of Hn
C

Denote Cn,1 the vector space Cn+1 endowed with a Hermitian form 〈· , ·〉 of signature (n, 1).
Define V − = {Z ∈ Cn,1|〈Z,Z〉 < 0} and V 0 = {Z ∈ Cn,1|〈Z,Z〉 = 0}. Let π : Cn+1 −
{0} −→ CPn denote projectivization. One may then define complex hyperbolic n-space Hn

C
as π(V −) ⊂ CPn, with the distance d (corresponding to the Bergman metric) given by:



15

cosh2 1

2
d(π(X), π(Y )) =

|〈X, Y 〉|2

〈X,X〉〈Y, Y 〉
(3.1)

The boundary at infinity ∂Hn
C is then naturally identified with π(V0). Different Hermitian

forms of signature (n, 1) give rise to different models of Hn
C. Two of the most common choices

are the Hermitian forms corresponding to the Hermitian matrices H1 = Diag(1, ..., 1,−1)
and:

H2 =

0 0 1
0 In−1 0
1 0 0

 (3.2)

In the first case, π(V −) ⊂ CP n is the unit ball of Cn, seen in the affine chart {zn+1 = 1}
of CP n, hence the model is called the ball model of Hn

C. In the second case, we obtain the
Siegel model of Hn

C, which is analogous to the upper-half space model of Hn
R and is likewise

well-adapted to parabolic isometries fixing a specific boundary point. We will mostly use the
Siegel model in this paper and will give a bit more details about it below. We will use the
following Cayley transform J to pass from the ball model to the Siegel model (see [Par19]); a
key point for us is that J ∈ GL(3,Z), hence conjugating by J preserves integrality of matrix
entries.

J =

1 1 0
0 1 −1
1 1 −1

 (3.3)

3.2.2 Isometries

It is clear from (3.1) that PU(n, 1) acts by isometries on Hn
C, denoting U(n, 1) the subgroup

of GL(n + 1,C) preserving the Hermitian form, and PU(n, 1) its image in PGL(n + 1,C).
It turns out that PU(n,1) is the group of holomorphic isometries of Hn

C, and the full group
of isometries is PU(n, 1) n Z/2, where the Z/2 factor corresponds to a real reflection (see
below). A holomorphic isometry of Hn

C is of one of the following three types:

• elliptic if it has a fixed point in Hn
C

• parabolic if it has (no fixed point in Hn
C and) exactly one fixed point in ∂Hn

C

• loxodromic: if it has (no fixed point in Hn
C and) exactly two fixed points in ∂Hn

C

3.2.3 Totally geodesic subspaces

A complex k-plane is a projective k-dimensional subspace of CP n intersecting π(V −) non-
trivially (so, it is an isometrically embedded copy of Hk

C ⊂ Hn
C). Complex 1-planes are usually

called complex lines. If L = π(L̃) is a complex (n− 1)-plane, any v ∈ Cn+1−{0} orthogonal
to L̃ is called a polar vector for L.

A real k-plane is the projective image of a totally real (k + 1)-subspace W of Cn,1, i.
e. a (k + 1)-dimensional real linear subspace such that 〈v, w〉 ∈ R for all v, w ∈ W . We
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will usually call real 2-planes simply real planes, or R-planes. Every real n-plane in Hn
C

is the fixed-point set of an antiholomorphic isometry of order 2 called a real reflection or
R-reflection. The prototype of such an isometry is the map given in affine coordinates by
(z1, ..., zn) 7→ (z1, ..., zn); this is an isometry provided that the Hermitian form has real
coefficients.

We will need to distinguish between the following types of parabolic isometries. A
parabolic isometry is called unipotent if it has a unipotent lift to U(n, 1). In dimensions
n > 1, unipotent isometries are either 2-step (also called vertical) or 3-step (also called hor-
izontal), according to whether the minimal polynomial of their unipotent lift is (X − 1)2 or
(X − 1)3 (see section 3.4 of [CG74]). Another way to distinguish these two types is that
2-step unipotent isometries preserve a complex line (in fact, any complex line through their
fixed point) but no real plane, whereas 3-step unipotent isometries preserve a real plane (in
fact, an entire fan of these, see section 2.3 of [PW17]) but no complex line.

3.2.4 Boundary at infinity and Heisenberg group

In the Siegel model associated to the Hermitian form given by the matrix H2 in (3.2), Hn
C can

be parametrized by Cn−1 × R× R+ as follows, denoting as before by π the projectivization
map: Hn

C = {π(ψ(z, t, u)) | z ∈ Cn−1, t ∈ R, u ∈ R+}, where:

ψ(z, t, u) =

 (−|z|2 − u+ it)/2
z
1

 (3.4)

With this parametrization the boundary at infinity ∂∞Hn
C corresponds to the one-point

compactification: {
π(ψ(z, t, 0)) | z ∈ Cn−1, t ∈ R

}
∪ {∞}

where ∞ = π((1, 0, ..., 0)T ). The coordinates (z, t, u) ∈ Cn−1 × R × R+ are called the
horospherical coordinates of the point π(ψ(z, t, u) ∈ Hn

C.
The punctured boundary ∂∞Hn

C − {∞} is then naturally identified to the generalized
Heisenberg group Heis(C, n), defined as the set Cn−1 × R equipped with the group law:

(z1, t1)(z2, t2) = (z1 + z2, t1 + t2 + 2Im (z1 · z2))

where · denotes the usual Euclidean dot-product on Cn−1. This is the classical 3-dimensional
Heisenberg group when n = 2. The identification of ∂∞Hn

C − {∞} with Heis(C, n) is given
by the simply-transitive action of Heis(C, n) on ∂∞Hn

C − {∞}, where the element (z1, t1) ∈
Heis(C, n) acts on the vector ψ(z2, t2, 0) by left-multiplication by the following Heisenberg
translation matrix in U(n, 1):

T(z1,t1) =

 1 −z∗1 (−|z1|2 + it1)/2
0 In−1 z1

0 0 1

 (3.5)

In other words: T(z1,t1)ψ(z2, t2, 0) = ψ(z1 + z2, t1 + t2 + 2Im (z1 · z2), 0).
In the above terminology, the unipotent isometry (given by the projective action of)

T(z1,t1) is 2-step (or vertical) if z1 = 0 and 3-step (horizontal) otherwise.
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3.2.5 The hybridization construction

We will first embed the pair of Fuchsian groups into SU(2, 1) in the ball model of H2
C;

there, two preferred orthogonal complex lines L1 and L2 are given by (the coordinate axes in
the standard affine chart) L1 = π(Span(e1, e3)) and L2 = π(Span(e2, e3)), where (e1, e2, e3)
denotes the canonical basis of C3 and π : C3−{0} −→ CP 2 the projectivization map. These
intersect at the origin O = π(e3).

We will embed SU(1, 1) in the stabilizer of each of these complex lines in the obvious
block matrix form, namely via the injective homomorphisms:

ι1 : SU(1, 1) −→ SU(2, 1)(
a b
c d

)
7−→

 a 0 b
0 1 0
c 0 d

 (3.6)

ι2 : SU(1, 1) −→ SU(2, 1)(
a b
c d

)
7−→

 1 0 0
0 a b
0 c d

 (3.7)

In the notation from the introduction, given two lattices Γ1,Γ2 in SU(1, 1), we consider
the hybrid H(Γ1,Γ2) = 〈ι1(Γ1), ι2(Γ2)〉 < PU(2, 1).

3.3 A hybrid subgroup of the Eisenstein-Picard mod-

ular group PU(2, 1,O3)

Denoting ω = −1+i
√

3
2

, the following matrices generate SU(1, 1;O3) in the disk model of H1
C:

E =

(
ω 0
0 ω2

)
, U =

(
1 + i

√
3 −i

√
3

i
√

3 1− i
√

3

)
I =

(
−1 0
0 −1

)
Note that PSU(1, 1;O3) acts on the unit disk as (the orientation-preserving subgroup of) a
(3,∞,∞) triangle group. (An anonymous referee pointed out that we had omitted I in a
previous version of the paper).

We consider the hybrid group H(3) = H (SU(1, 1;O3), SU(1, 1;O3)), which by definition
is generated by ιj(E), ιj(U) and ιj(I) for j = 1, 2. By the following observation it will suffice
for our purposes to study the subgroup H̃(3) = 〈ι1(E), ι2(E), ι1(U), ι2(U)〉, which is a hybrid
of two copies of PSU(1, 1;O3).

Lemma 9. H̃(3) is normal in H(3), with index dividing 4.

Proof. Since the ιj(E), ιj(I) are diagonal they all commute; moreover for each j = 1, 2 ιj(I)
commutes with ιj(E), ιj(U). It suffices therefore to show that ιj(I) conjugates ι3−j(U) into
H̃(3) for j = 1, 2; a straightforward computation gives: ιj(I)ι3−j(U)ιj(I) = ι3−j((EUE)−1).
Therefore H̃(3) is normal in H(3); the quotient group is a quotient of Z/2Z× Z/2Z as it is
generated by the images of ι1(−I) and ι2(−I) which have order 2 and commute.
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It will be more convenient for us to work in the Siegel model, in other words to conju-
gate by the Cayley transform J given in (3.3); we will abuse notation slightly by denoting
again H(3), H̃(3) the conjugates J−1H(3)J, J−1H̃(3)J . Concretely, we consider H̃(3) =
〈E1, U1, E2, U2〉, with:

E1 = J−1ι1(E)J =

 ω2 ω2 − 1 ω + 2

i
√

3 1 + i
√

3 ω2 − 1

i
√

3 i
√

3 ω2

 , U1 = J−1ι1(U)J =

1 0 i
√

3
0 1 0
0 0 1

 ,

E2 = J−1ι2(E)J =

 ω2 −i
√

3 i
√

3

ω + 2 1 + i
√

3 −i
√

3
ω + 2 ω + 2 ω2

 , U2 = J−1ι2(U)J =

 1 0 0
0 1 0

i
√

3 0 1

 .

Remark. Since E1, E2 are both regular elliptic of order 3 with the same eigenspaces, they are
either equal or inverse of each other. It turns out that E2 = E−1

1 in PU(2, 1) (the matrices
satisfy E2 = ωE−1

1 ). We will therefore omit the generator E2 from now on.

In [FP06] the authors determine that the Eisenstein-Picard modular group PU(2, 1;O3)
has presentation:

PU(2, 1;O3) =
〈
P,Q,R | R2, (QP−1)6, PQ−1RQP−1R, P 3Q−2, (RP )3

〉
, where

P =

1 1 ω
0 ω −ω
0 0 1

 , Q =

1 1 ω
0 −1 1
0 0 1

 , R =

0 0 1
0 −1 0
1 0 0

 .

A straightforward computation gives the following:

Lemma 10. The generators for the hybrid H̃(3) can be expressed in terms of the Falbel-
Parker generators for PU(2, 1;O3) as follows:

U1 = Q2,

U2 = RQ2R,

E1 = P 2(RQ2)2P−2.

Lemma 11. The hybrid H̃(3) is a normal subgroup of PU(2, 1;O3).

Proof. It suffices to check that generators of PU(2, 1;O3) conjugate generators of H̃(3) into
H̃(3). Straightforward computations give the following:

P−1U1P = U1

Q−1U1Q = U1

R−1U1R = U2

P−1U2P = U−1
1 E1

Q−1U2Q = U−1
1 E1

R−1U2R = U1

P−1E1P = U−1
2 E−1

1 U1

Q−1E1Q = U2U1

R−1E1R = E−1
1
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We can then form the quotient group G = PU(2, 1;O3)/H̃(3), which by Lemma 10 has
presentation:

G = PU(2, 1;O3)/H(3) =

〈
P,Q,R

∣∣∣∣ R2, (QP−1)6, PQ−1RQP−1R,

P 3Q−2, (RP )3, Q2

〉
.

(Note that the relation Q2 makes the other three relators corresponding to the generators of
H(3) superfluous). The Tietze transformation a = PQ−1, b = Q, c = R, yields the following
presentation for G:

G =
〈
a, b, c | c2, a6, [a, c], (ab)3, (cab)3, b2

〉
Note that this is a quotient of an extension of the (2, 3, 6) triangle group:

Theorem 12. The hybrid H(3) has infinite index in PU(2, 1,O3).

Proof. Note that G/〈〈c〉〉 is the (2, 3, 6)-triangle group, hence infinite. Therefore G is also
infinite, in other words H̃(3) has infinite index in PU(2, 1,O3). By Lemma 9, H(3) also has
infinite index in PU(2, 1,O3).

Corollary 13. The hybrid H(3) is a thin sugbroup of PU(2, 1,O3).

Proof. The only additional statement is that H(3) is Zariski-dense in PU(2, 1), which is
simple to see in rank 1, as it reduces essentially to irreducibility. Indeed, by [CG74] if a
discrete subgroup Γ is not Zariski-dense then it preserves a strict subspace of H2

C or it fixes
a point on ∂∞H2

C. This is easily seen not to be the case, as E1 does not preserve the unique
complex line preserved by both U1 and U2. (This also follows from the fact that H(3) has
full limit set).

We conclude this section with a few remarks about the algebaric structure of the hybrid
H(3). We do not know a complete presentation for H(3), in fact it may be non-finitely
presented as far as we know (see [Kap13] and Proposition 4.2 of [FW14]). The following
observations are obtained by direct computation using the generators in matrix form.

Lemma 14. The following relations hold between the generators E1, U1, U2 for H(3):

E3
1 = (U1U2)3 = (E1U

−1
1 U2)3 = (E1U2U

−1
1 )3 = (E−1

1 U1U
−1
2 )3 = (E−1

1 U−1
2 U1)3 = 1.

Corollary 15. The hybrid H(3) has finite abelianization; in particular it is not isomorphic
to the amalgamated product of i1(SU(1, 1,O3)) and i2(SU(1, 1,O3)) over their intersection.

Proof. Observe that by Lemma 14, the following relations hold in the abelianization H(3)ab

(we slightly abuse notation by using the same symbol for elements of H(3) and their image
in H(3)ab): E3

1 = U6
1 = 1, U3

1 = U3
2 . Therefore H(3)ab is a quotient of Z/3Z×Z/3Z×Z/6Z.

The second statement follows by observing that the abelianization of SU(1, 1,O3) is Z, as
the former is a (3,∞,∞) triangle group.
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It is interesting to note that this also tells us the behavior of a related hybrid group,
namely the hybrid of two (2, 6,∞) triangle groups, rather than (3,∞,∞) (which each
(2, 6,∞) group contains with index 2). A simple way to view this new hybrid H ′(3) as
a subgroup of Γ(3) = PU(2, 1,O3) containing the previous hybrid H(3) is to take the ob-
vious square root of the previous generator E1 in terms of the Falbel-Parker generators, in
other words to take H(3) to be generated by E ′1 = P 2(RQ2)P−2, and U1 = Q2, U2 = RQ2R
unchanged.

Lemma 16. The hybrid H ′(3) is contained in [Γ(3),Γ(3)].

Proof. From the Falbel-Parker presentation for Γ3 we get (abusing notation slightly again
by using the same symbol for elements of Γ(3) and their image in Γ(3)ab):

Γ(3)ab = Γ(3)/[Γ(3),Γ(3)] = 〈P,Q,R | R = P 3 = Q2 = [P,Q] = 1〉.

The result then follows by noting that the generators listed above for H ′(3) all become trivial
in the abelianization.

The following is Lemma 6 of [FW14].

Lemma 17. The commutator subgroup [Γ(3),Γ(3)] has abelianization Z⊕ Z.

Lemma 18. The hybrid H ′(3) has finite abelianization.

Proof. This follows from the relations given in Lemma 14 by noting that H ′(3) is generated
by E ′1, U1, U2 with (E ′1)2 = E1.

The following is well known but we include it for completeness:

Lemma 19. If K1 < K2 are two groups with [K2 : K1] and Kab
1 finite, then Kab

2 is finite.

Proof. Denote i the inclusion map from K1 into K2, and πi : Ki −→ Kab
i the quotient

maps for i = 1, 2. Then π2 ◦ i is a homomorphism from K1 to an abelian group, so by the
universal property of abelianizations π2◦i factors through Kab

1 , i.e. there is a homomorphism
i∗ : Kab

1 −→ Kab
2 such that i∗ ◦ π1 = π2 ◦ i. Since K1 = i(K1) has finite index in K2 by

assumption and π2 is surjective, π2(K1) = i∗(π1(K1)) = i∗(K
ab
1 ) has finite index in Kab

2 . The
result follows since Kab

1 is finite.

Combining Lemmas 16, 17, 18 and 19 gives the following:

Corollary 20. The hybrid H ′(3) has infinite index in [Γ(3),Γ(3)], hence also in Γ(3).

It is interesting to note that, in contrast with the previous hybrid H(3) which was normal
in Γ(3), H ′(3) now has infinite index in its normal closure 〈〈H ′(3)〉〉 = Γ(3) in Γ(3) (the
presentation of Γ(3)/〈〈H ′(3)〉〉 obtained by adding the generators of H ′(3) to the presentation
for Γ(3) now gives the trivial group).
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3.4 A hybrid subgroup of the Gauss-Picard modular

group PU(2, 1,O1)

The following matrices generate SU(1, 1;O1) in the ball model of H1
C:

E =

(
−i 0
0 i

)
, U =

(
1 + i −i
i 1− i

)
.

We now consider the hybrid group H (SU(1, 1;O1), SU(1, 1;O1)), which by definition is
generated by ι1(E), ι1(U), ι2(E) and ι2(U). It will be again more convenient for us to work
in the Siegel model, in other words to conjugate by the Cayley transform J given in (3.3).
We thus consider the group H(1) = 〈E1, U1, E2, U2〉, where:

E1 = J−1ι1(E)J =

 i −1 + i 1− i
−2i 1− 2i −1 + i
−2i −2i i

 , U1 = J−1ι1(U)J =

1 0 i
0 1 0
0 0 1

 ,

E2 = J−1ι2(E)J =

 i 2i −2i
1− i 1− 2i 2i
1− i 1− i i

 , U2 = J−1ι2(U)J =

1 0 0
0 1 0
i 0 1

 .

A presentation for the Gauss-Picard lattice PU(2, 1;O1) was first found in [FFP11],
however for our purposes it is more convenient to use the following presentation given in
[MP17]:

PU(2, 1;O1) =

〈
T2, Tτ , Tv, R, I

∣∣∣∣
[Tτ , T2] = T 4

v , [Tv, T2], [Tv, Tτ ], [Tv, R], R4, I2, [R, I],

RT2R
−1 = T 2

τ T
−1
2 T 4

v , RTτR
−1 = TτT

−1
2 T 2

v ,

[I, T2]2, (ITv)
3 = R, [I, Tτ ] = TτIR

2, (TvIR
−1T 2

v I)2,

IT−1
v TτIRT

−1
2 T−1

v = T2T
−1
τ ITτR

2TvI,

(IT−1
v TτIRT

−1
2 T−1

v )2 = R−1T−1
2 TτT

−3
v

〉

where

T2 =

1 −2 −2
0 1 2
0 0 1

 , Tτ =

1 −1 + i −1
0 1 1 + i
0 0 1

 ,

Tv =

, 1 0 i
0 1 0
0 0 1

 , R =

i 0 0
0 −1 0
0 0 i

 , I =

0 0 1
0 −1 0
1 0 0

 .

A straightforward computation gives the following:
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Lemma 21. The generators for the hybrid H(1) can be expressed in terms of the Mark-
Paupert generators for PU(2, 1;O1) as follows:

U1 = Tv,

U2 = ITvI,

E1 = T−1
v TτIRT

−1
2 I,

E2 = IT−1
v TτIRT

−1
2 .

Lemma 22. The hybrid H(1) is a normal subgroup of PU(2, 1;O1).

Proof. It suffices to check that generators of PU(2, 1;O1) conjugate generators of H(1) into
H(1). Note that there is nothing to check for Tv = U1 as it is a generator for both groups; also
note that R2 = (U1U2)3 ∈ H(1). Straightforward computations give the following relations:

T−1
2 U1T2 = U1

T−1
τ U1Tτ = U1

R−1U1R = U1

I−1U1I = U2

T−1
2 U2T2 = R2E−1

2 U2E2R
2

T−1
τ U2Tτ = (R2U1E1)U2(R2U1E1)−1

R−1U2R = U2

I−1U2I = U1

T−1
2 E1T2 = R2U−1

1 E2U
−1
1 E−1

2 R2

T−1
τ E1Tτ = (R2U2U1)E2(R2U2U1)−1

R−1E1R = (U1U2U1)−1E2(U1U2U1)
I−1E1I = E2

T−1
2 E2T2 = R2U−1

2 E1U
−1
2 E−1

1 R2

T−1
τ E2Tτ = (R2U2U1)E1(R2U2U1)−1

R−1E2R = (U2U1U2)−1E1(U2U1U2)
I−1E2I = E1

Theorem 23. The hybrid H(1) has index 2 in the full Gauss-Picard lattice PU(2, 1;O1).

Proof. A presentation for the quotient PU(2, 1;O1)/H(1) is obtained from the presentation
for PU(2, 1;O1), to which we add as relations the generators of the subgroup H(1) written
as words in the generators for PU(2, 1;O1) as in Lemma 21.

PU(2, 1;O1)/H(1) =

〈
T2, Tτ , Tv, R, I

∣∣∣∣
[Tτ , T2] = T 4

v , [Tv, T2], [Tv, Tτ ], [Tv, R], R4, I2, [R, I],

RT2R
−1 = T 2

τ T
−1
2 T 4

v , RTτR
−1 = TτT

−1
2 T 2

v ,

[I, T2]2, (ITv)
3 = R, [I, Tτ ] = TτIR

2, (TvIR
−1T 2

v I)2,

IT−1
v TτIRT

−1
2 T−1

v = T2T
−1
τ ITτR

2TvI,

(IT−1
v TτIRT

−1
2 T−1

v )2 = R−1T−1
2 TτT

−3
v ,

Tv, ITvI, T
−1
v TτIRT

−1
2 I, IT−1

v TτIRT
−1
2

〉

Since Tv = 1 in the quotient, the relation (ITv)
3 = R implies I = R. The relation coming

from E1 implies that I = TτT
−1
2 , and substituting into the relation on the fourth line above

yields I = Tτ . With this, T1 and I commute, and the relation on the fifth line above yields
T2 = 1. Thus the presentation above simplifies to

PU(2, 1;O1)/H(1) =
〈
T2, Tτ , Tv, R, I | I = R = Tτ , T2 = Tv = I2 = 1

〉
= Z/2Z
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We now consider the related hybrid H ′(1) as in the case of d = 3, namely taking H ′(1) to
be the hybrid of two copies of the Fuchsian triangle group (2, 4,∞), rather than (2,∞,∞) '
SU(1, 1,O1). We immediately get the following result by noting that H ′(1) contains H(1),
which has index 2 in the full lattice Γ(1), as well as a new element of order 4 not belonging
to H(1).

Corollary 24. The hybrid H ′(1) is equal to the full lattice Γ(1) = PU(2, 1;O1).

3.5 A hybrid subgroup of the Picard Modular group

PU(2, 1,O7)

The following matrices generate U(1, 1;O7) in the ball model of H1
C:

U =

(
1 + i

√
7 −i

√
7

i
√

7 1− i
√

7

)
, A =

(
−1

2
+ i

√
7

2
1

−1 1
2

+ i
√

7
2

)
, B =

(
−1 0
0 1

)
.

In the Siegel model, the corresponding hybrid H(7) = H(U(1, 1;O7),U(1, 1;O7)) has the
following generators:

U1 = J−1ι1(U)J =

1 0 i
√

7
0 1 0
0 0 1

 , U2 = J−1ι2(U)J =

 1 0 0
0 1 0

i
√

7 0 1

 ,

A1 = J−1ι1(A)J =

−1
2

+ i
√

7
2
−3

2
+ i

√
7

2
1
2
− i

√
7

2

1 2 −3
2

+ i
√

7
2

1 1 −1
2

+ i
√

7
2

 , B1 = J−1ι1(B)J =

 1 0 0
−2 −1 0
−2 −2 1

 ,

A2 = J−1ι2(A)J =

−1
2

+ i
√

7
2

−1 1
3
2
− i

√
7

2
2 −1

1
2
− i

√
7

2
3
2
− i
√

7
2
−1

2
+ i
√

7
2

 , B2 = J−1ι2(U)J =

1 2 −2
0 −1 2
0 0 1

 .

In [MP17] the authors determine that PU(2, 1;O7) has presentation

PU(2, 1;O7) =

〈
T1, Tτ , Tv, R, I0, I1

∣∣∣∣

[Tτ , T1] = Tv, [Tv, T1], [Tv, Tτ ], [Tv, R], R2, (RTτ )
2,

(RT1)2 = Tv, I
2
0 , I

2
1 , [R, I0], [R, I1I0T

−1
1 Tτ ]

2,

[R, I1I0T
−1
1 Tτ ] = TvI0I1TτT

−1
1 I1I0TτT

−2
1 Tv,

[R, I1I0T
−1
1 Tτ ] = TvT

−1
1 I0T1I0T

−1
τ I1RI0T

−1
v ,

[I0, T
−1
v TτT1] = T1I0I1I0T

−1
1 ,

R[R, I1I0T
−1
1 Tτ ] = T1I0TvT

−2
1 I0T1T

−1
v R,

I1 = T 2
1 TτRT

2
1 I0T

−1
1 I0T1I0

〉

(3.8)
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where

T1 =

1 −1 −1
2

+ i
√

7
2

0 1 1
0 0 1

 , R =

1 0 0
0 −1 0
0 0 1

 ,

Tτ =

1 −1
2

+ i
√

7
2

−1

0 1 1
2

+ i
√

7
2

0 0 1

 , I0 =

0 0 1
0 −1 0
1 0 0

 ,

Tv =

1 0 i
√

7
0 1 0
0 0 1

 , I1 =

−1
2

+ i
√

7
2

1
2

+ i
√

7
2

2
1
2

+ i
√

7
2

2 1
2
− i

√
7

2

2 1
2
− i

√
7

2
−1

2
− i

√
7

2

 .

In terms of these generators, the generators for H(7) can be written as follows:

U1 = Tv,

U2 = I0U1I0,

A1 = T1I0T1R,

A2 = I0A1I0,

B1 = (I0T1)R(I0T1)−1,

B2 = I0B1I0.

Lemma 25. The hybrid H(7) is a normal subgroup of PU(2, 1;O7).

Proof. Since we have that

R = (A1A2B1A1B2)−1B1(A1A2B1A1B2) ∈ H(7),

Tv = U1 ∈ H(7),
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and I0H(7)I0 ⊆ H(7), it suffices to check conjugation by T1 and Tτ :

T−1
1 A1T1 = (A1A

−1
2 B2A

−1
2 A1)−1A2(A1A

−1
2 B2A

−1
2 A1)

T−1
τ A1Tτ = (A−1

1 A2U1)−1A2(A−1
1 A2U1)

T−1
1 A2T1 = (B2A2A

−1
1 A−1

2 B1)−1A2(B2A2A
−1
1 A−1

2 B1)

T−1
τ A2Tτ = (B1A

−1
1 A2U1)−1A1(B1A

−1
1 A2U1)

T−1
1 B1T1 = (A−1

1 A−1
2 B1)−1B1(A−1

1 A−1
2 B1)

T−1
τ B1Tτ = (A2U1)−1B2(A2U1)

T−1
1 B2T1 = R

T−1
τ B2Tτ = (A−1

1 A2)−1B1(A−1
1 A2)

T−1
1 U1T1 = U1

T−1
τ U1Tτ = U1

T−1
1 U2T1 = (A2

1A
−1
2 B2A

−1
2 A1)−1U2(A2

1A
−1
2 B2A

−1
2 A1)

T−1
τ U2Tτ = (U2B1A

−1
1 A2)−1U1(U2B1A

−1
1 A2)

Theorem 26. The hybrid H(7) is the full lattice PU(2, 1;O7).

Proof. We consider the quotient

PU(2, 1;O7)/H(7)

The relators coming from the generators U1, B1 and A1 of H(7) immediately imply that, in
the quotient, Tv = R = 1 and T 2

1 = I0, respectively. Moreover, the relation (RT1)2 = Tv
implies that T 2

1 = I0 = 1, and the relation defining I1 implies that I1 = Tτ , whence T 2
τ = 1.

Substituting this into the relations on the third and fourth lines of the presentation (3.8),
we get that T1 = 1 and Tτ = 1, respectively.

3.6 Limit sets and geometrical finiteness

3.6.1 Limit sets

We first briefly recall the definition and two classical facts about limit sets of discrete groups
of isometries. The space we consider in this paper is the complex hyperbolic plane H2

C, but
these definitions and facts hold more generally in any negatively curved symmetric space
(so, hyperbolic space of any dimension over the real or complex numbers or quaternions, or
hyperbolic plane over the octonions).
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Definition. Let X be a negatively curved symmetric space, ∂∞X its boundary at infinity
(or visual, or Gromov boundary), and Γ a discrete subgroup of Isom(X). The limit set Λ(Γ)
of Γ is defined as the set of accumulation points in ∂∞X of the orbit Γx0 for any choice of
x0 ∈ X; this does not depend on the choice of x0.

A basic property of Λ(Γ) is that it is the minimal (nonempty) closed Γ-invariant subset
of ∂∞X, in fact the orbit Γp∞ is dense in Λ(Γ) for any p∞ ∈ Λ(Γ). We will use the following
two classical properties of limit sets; recall that a discrete subgroup Γ of Isom(X) is called
non-elementary if Λ(Γ) contains more than two points.

Proposition 27. Let X be a negatively curved symmetric space and Γ a discrete subgroup
of Isom(X).

(a) If Γ is a lattice in Isom(X) then Λ(Γ) = ∂∞X.

(b) If Γ′ is a nonelementary normal subgroup of Γ then Λ(Γ′) = Λ(Γ).

The following result is an immediate consequence of this and Lemmas 11, 22 (or Theo-
rem 23).

Proposition 28. For d = 1, 3 the hybrid H(d) has full limit set: Λ(H(d)) = ∂∞H2
C ' S3.

3.6.2 Geometrical finiteness

The original notion of geometrical finiteness for a Kleinian group Γ < Isom (H3
R) was to

admit a finite-sided polyhedral fundamental domain. This was later shown to admit several
equivalent formulations, then systematically studied by Bowditch in higher-dimensional real
hyperbolic spaces in [Bow93], and more generally in pinched Hadamard manifolds in [Bow95].
In [Bow93], Bowditch labelled the five equivalent formulations of the definition of geometrical
finiteness (GF1)-(GF5), with (GF3) corresponding to the original notion. He then showed in
[Bow95] that the four other formulations, now labelled F1,F2,F4, and F5, remain equivalent
in the more general setting (but not the original one). The most convenient for our purposes
will be condition F5, which we now recall.

Let as above X be a negatively curved symmetric space and Γ a discrete subgroup of
Isom(X). The convex hull Hull(Γ) of Γ in X is the convex hull of the limit set Λ(Γ), more
precisely the smallest convex subset of X whose closure in X = X ∪ ∂∞X contains Λ(Γ).
This is invariant under the action of Γ, and the convex core Core(Γ) of Γ in X is defined as
the quotient of Hull(Γ) under the action of Γ.

Definition. We say that Γ satisfies condition F5 if (a) for some ε > 0, the tubular neigh-
borhood Nε(Core(Γ)) in X/Γ has finite volume, and (b) there is a bound on the orders of
the finite subgroups of Γ.

Proposition 29. The hybrid H(3) < Isom(H2
C) is geometrically infinite.

Proof. We show that H(3) does not satisfy condition F5. By Proposition 28, Λ(H(3)) =
∂∞H2

C, hence Hull(H(3)) = H2
C. Now by Theorem 12, H(3) has infinite index in a lattice,

therefore it acts on H2
C with infinite covolume, in other words Core(H(3)) has infinite volume

hence so does any of its tubular neighborhoods.



Chapter 4

Nonarithmetic hybrids in SU(2, 1)

A triangle group is one generated by reflections in the sides of a triangle. Because of this
very simple and very geometric description, these groups have been very well-studied. In
particular, in 1977, Takeuchi [Tak77] classified all arithmetic and non-arithmetic triangle
groups in SL(2,R). In 1980, Mostow [Mos80] explored a similar family of groups in SU(2, 1)
which are generated by complex reflections in lines with order-3 symmetry (this is analogous
to a triangle group where the triangle is equilateral). Remarkably, many of these groups
end up being non-arithmetic, and this provided some of the earliest known examples of
non-arithmetic lattices in SU(2, 1). In this section we explore hybrid subgroups in some of
Mostow’s lattices, and the main result of this section is the following

Theorem 1. Among Mostow’s non-arithmetic lattices Γ(p, t) < PU(2, 1), the groups Γ(4, 1/12)
and Γ(5, 1/5) arise as hybrids of non-commensurable arithmetic lattices in PU(1, 1).

4.1 Mostow’s lattices

Following along with [Mos80] and [DFP05], p ≥ 3 is an integer, t is a real number satisfying

|t| < 3
(

1
2
− 1

p

)
, α = 1

2
csc(π/p), ϕ = eπit/3, and η = eπi/p. The Hermitian form is given by

〈x, y〉 = xTHy where

H =

 1 −αϕ −αϕ
−αϕ 1 −αϕ
−αϕ −αϕ 1

 .

With p, t as above, the reflection groups to consider are Γ(p, t) = 〈R1, R2, R3〉 where

R1 =

η2 −iηϕ −iηϕ
0 1 0
0 0 1

 , R2 =

 1 0 0
−iηϕ η2 −iηϕ

0 0 1

 , R3 =

 1 0 0
0 1 0
−iηϕ −iηϕ η2

 .

When |t| < 1
2
− 1

p
, Mostow refers to these groups has having “small phase shift.”

27
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Following the notation in [DFP05], we study closely related groups Γ̃(p, t) = 〈R1, J〉
where

J =

0 0 1
1 0 0
0 1 0

 .

J has order 3 and Ri = JRi+3J
−1 (where indices are taken modulo 3). It is sufficient to

study these groups Γ̃(p, t) due to the following result:

Proposition 30 (Lemma 16.1 in [Mos80], Prop 2.11 in [DFP05]). Γ(p, t) has index dividing
3 in Γ̃(p, t).

Remark (Tables 1 and 2 in [Mos80], Remark 5.3 in [DFP05]). Given p = 3, 4, 5, there are
only finitely-many values of t for which Γ(p, t) is discrete. They are given in Table 4.1.

p |t| < 1
2
− 1

p
|t| ≥ 1

2
− 1

p

3 0, 1
30

, 1
18

, 1
12

, 5
42

1
6
, 7

30
, 1

3

4 0, 1
12

, 3
20

1
4
, 5

12

5 1
10

, 1
5

11
30

, 7
10

Table 4.1: Values of p and t for which Γ(p, t) is discrete

Theorem 31 (Theorem 17.3 in [Mos80]). The following lattices Γ(p, t) ≤ PU(2, 1) are nonar-
ithmetic: Γ(3, 5/42), Γ(3, 1/12), Γ(3, 1/30), Γ(4, 3/20), Γ(4, 1/12), Γ(5, 1/5), Γ(5, 11/30).
The non-cocompact lattices Γ(p, t) are arithmetic.

4.2 Hybrids in Mostow’s Lattices

When Γ(p, t) has small phase shift, the fundamental domain for each of Mostow’s groups
is built by coning over two polytopes that intersect in a right-angled hexagon (see Figure
4.1 for a topological picture, or Figure 1 on Page 16 of [DFP05] for a geometric picture in
coordinates) which becomes degenerate for larger t-values. Taking lifts to C2,1, one sees that
non-adjacent sides for each hexagon intersect in positive vectors , which are given explicitly
below:

v123 =

−iηϕ1
iηϕ

 , v231 =

 iηϕ
−iηϕ

1

 , v312 =

 1
iηϕ
−iηϕ

 ,

v321 =

 iηϕ
1
−iηϕ

 , v132 =

−iηϕiηϕ
1

 , v213 =

 1
−iηϕ
iηϕ

 .

Geometrically, vijk is the polar vector to the mirror for the complex reflection J±1RjRk (for
k = j ± 1). What’s more,
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v123

v231

v312v213

v321

v132

Figure 4.1: Core right-angled hexagon

Proposition 32 (Proposition 2.13(3) in [DFP05]). vijk ⊥ vjik and vijk ⊥ vikj.

For the hybrid construction, we use the subspaces (considered as projective subspaces
of H2

C) corresponding to v⊥ijk. Since Jvijk = vkij, it suffices to look only at v⊥312 and v⊥312

as the remaining subspaces are obtained by successive applications of J . In homogeneous
coordinates, one sees that

v⊥312 = {[z, iηϕ, 1]T : z ∈ C}
v⊥321 = {[iηϕ, z, 1]T : z ∈ C}

Let Λijk ≤ Γ(p, t) be the stabilizer subgroup of v⊥ijk, which is naturally identified with a
subgroup of PU(1, 1), and let Γijk be a lift of this group to SU(1, 1).

Proposition 33. Γ312 is a cocompact lattice in SU(1, 1). It is arithmetic for all pairs (p, t)
appearing in Table 4.1 except (3, 1/30), (3, 1/12), (3, 5/42), and (4, 3/20).

Proof. R1 and R3J both stabilize v⊥312:

R1 : [z, iηϕ, 1]T 7→ [η2z + ϕ2 − iηϕ, iηϕ, 1]T

R3J : [z, iηϕ, 1]T 7→ [iηϕ/z, iηϕ, 1]T

Let A and B be the following elements in SU(1, 1) corresponding to the actions of R1 and
R3J on v⊥312, respectively.

A =
1

η

(
η2 ϕ2 − iηϕ
0 1

)
, B =

1√
−iηϕ

(
0 iηϕ
1 0

)
, A−1B =

1√
−iηϕ

(
−ϕ2 + iηϕ iηϕ

η2 0

)
.

One then sees that

|Tr(A)| = |eiπ/p + e−iπ/p|,
|Tr(B)| = 0,

|Tr(A−1B)| = |eiπ(−1/2+1/p+t/3) + e−2πit/3|.

All of these values are less than 2 when p ≥ 3 and |t| 6= 1
2
− 1

p
and so the elements are elliptic.

Thus 〈A,B〉 is a cocompact triangle group (and therefore Γ312 is a cocompact lattice). By
computing orders of these elements for (p, t) values in Table 4.1, one obtains Table 4.2
showing the corresponding triangle groups, and arithmeticity(A)/non-arithmeticity(NA) of
each can be checked by comparing with the main theorem of [Tak77].
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(p, t) 4(x, y, z) A/NA (p, t) 4(x, y, z) A/NA
(3,−5/42) 4(2, 3, 7) A (4,−3/20) 4(2, 4, 5) A
(3,−1/12) 4(2, 3, 8) A (4,−1/12) 4(2, 4, 6) A
(3,−1/18) 4(2, 3, 9) A (4, 0) 4(2, 4, 8) A
(3,−1/30) 4(2, 3, 10) A (4, 1/12) 4(2, 4, 12) A

(3, 0) 4(2, 3, 12) A (4, 3/20) 4(2, 4, 20) NA
(3, 1/30) 4(2, 3, 15) NA (5,−1/5) 4(2, 4, 5) A
(3, 1/18) 4(2, 3, 18) A (5,−1/10) 4(2, 5, 5) A
(3, 1/12) 4(2, 3, 24) A (5, 1/10) 4(2, 5, 10) A
(3, 5/42) 4(2, 3, 42) NA (5, 1/5) 4(2, 5, 20) A

Table 4.2: Properties of Γ312

Proposition 34. Γ321 is a cocompact lattice in SU(1, 1). It is arithmetic for all pairs (p, t)
appearing in Table 4.1 except (3,−5/42), (3,−1/12), (3,−1/30), and (4,−3/20).

Proof. R2 and JR−1
3 both stabilize v⊥321:

R2 : [iηϕ, z, 1]T 7→ [iηϕ, η2z + ϕ2 − iηϕ, 1]T

JR−1
3 : [iηϕ, z1]T 7→ [iηϕ, iηϕ/z, 1]T

Let A and B be the following elements in SU(1, 1) corresponding to the actions of R2 and
JR−1

3 on v⊥321, respectively.

A =
1

η

(
η2 ϕ2 − iηϕ
0 1

)
, B =

1√
−iηϕ

(
0 iηϕ
1 0

)
, A−1B =

1√
−iηϕ

(
iηϕ− ϕ2 iηϕ

η2 0

)
One can check that

|Tr(A)| = |eiπ/p + e−iπ/p|,
|Tr(B)| = 0,

|Tr(A−1B)| = |eiπ(1/2+1/p−t/3) − e2πit/3|.
All of these values are less than 2 when p ≥ 3 and |t| 6= 1

2
− 1

p
and so the elements are elliptic.

Thus 〈A,B〉 is a cocompact triangle group (and therefore Γ321 is a cocompact lattice). By
computing orders of these elements for (p, t) values in Table 4.1, one obtains Table 4.3
showing the corresponding triangle groups, and arithmeticity(A)/non-arithmeticity(NA) of
each can be checked by comparing with the main theorem of [Tak77].

Theorem 35. For |t| < 1
2
− 1

p
, the hybrid H(Γ312,Γ321) is the full lattice Γ̃(p, t).

Proof. The group K = 〈R1, R3J,R2, JR
−1
3 〉 is a subgroup of H(Γ312,Γ321). Since J =

(R3J)−1(JR−1
3 )−1, K = 〈R1, J〉 = Γ̃(p, t).

By comparing with the table on Page 418 of [MR03], one sees that Γ312 and Γ321 are both
arithmetic and noncommensurable in the cases where (p, t) = (4, 1/12) and (5, 1/5). This
means that

Theorem 36. Γ(4, 1/12) and Γ(5, 1/5) are nonarithmetic lattices obtained by interbreeding
two noncommensurable arithmetic lattices.
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(p, t) 4(x, y, z) A/NA (p, t) 4(x, y, z) A/NA
(3,−5/42) 4(2, 3, 42) NA (4,−3/20) 4(2, 4, 20) NA
(3,−1/12) 4(2, 3, 24) A (4,−1/12) 4(2, 4, 12) A
(3,−1/18) 4(2, 3, 18) A (4, 0) 4(2, 4, 8) A
(3,−1/30) 4(2, 3, 15) NA (4, 1/12) 4(2, 4, 6) A

(3, 0) 4(2, 3, 12) A (4, 3/20) 4(2, 4, 5) A
(3, 1/30) 4(2, 3, 10) A (5,−1/5) 4(2, 5, 20) A
(3, 1/18) 4(2, 3, 9) A (5,−1/10) 4(2, 5, 10) A
(3, 1/12) 4(2, 3, 8) A (5, 1/10) 4(2, 5, 5) A
(3, 5/42) 4(2, 3, 7) A (5, 1/5) 4(2, 4, 5) A

Table 4.3: Properties of Γ321



Chapter 5

Future directions

5.1 Hybrids in Deraux–Parker–Paupert lattices

In [DPP16a] the authors examine a new family of subgroups also generated by 3 complex
reflections with threefold symmetry. Following along with [DPP16a], p ≥ 3 is an integer,

τ = −1+i
√

7
2

, a = e2πi/p, α = 2 − a3 − α3, β = (a2 − a)τ . The Hermitian form is given by
〈x, y〉 = x∗Hy where

H =

α β β

β α β

β β α


With p, τ as above, the groups to consider are Γ(p, τ) = 〈J,R1, R2, R3〉 where

J =

0 0 1
1 0 0
0 1 0

 and R1 =

a2 τ −aτ
0 a 0
0 0 a

 .

and R2 = JR1J
−1, R3 = J−1R1J .

Theorem 37 (Theorem 1.1 in [DPP16a]). Γ(p, τ) is a lattice precisely when p = 3, 4, 5, 6, 8, 12.
Moreover, Γ(p, τ) is cocompact if and only if p = 3, 5, 8, 12, and Γ(p, τ) is arithmetic if and
only if p = 3.

Let mi be the mirror for the complex reflection Ri. A relatively straightforward computa-

tion show that points in in m1 have the form
[
1, (−βz − α)/β, z

]T
for a complex parameter

z, and applications of J give the parameterizations for points in m2 and m3. For simplicity,

we’ll define M1(z) =
[
1, (−βz − α)/β, z

]T
.

Proposition 38. Let Λ1 = 〈(R1R2)2, (R1R3)2, (R1R2R3R
−1
2 )3, (R1R

−1
3 R2R3)3〉. Then Λ1 ≤

Stab(m1) and Γ1 = Λ1|m1 is (isomorphic to) a lattice in PU(1, 1).

Proof. That Λ1 stabilizes m1 is a straightforward check that the polar vector to m1 is an
eigenvector of each of the generators. One can see that the restriction to m1 is a lattice

in PU(1, 1) by looking at the Dirichlet domain based at M1

(
αβ

2−α2β

4α2−β3−β3

)
. In particular, the

32
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Figure 5.1: p = 3 Figure 5.2: p = 4 Figure 5.3: p = 5

Figure 5.4: p = 6 Figure 5.5: p = 8 Figure 5.6: p = 12

bisectors corresponding to the actions of elements (R1R2)2, (R1R2)−2, (R1R3)2, (R1R3)−2,
(R1R2R3R

−1
2 )−3, (R1R

−1
3 R2R3)3, and (R1R2)2(R1R3)2(R1R

−1
3 R2R3)3 form a finite-area hep-

tagon that (possibly strictly) contains a fundamental domain for Λ1. See Figures 5.1, 5.2,
5.3, 5.4, 5.5, 5.6.

Question 39. Is Γ1 is arithmetic?

The action of (R1R2)2 on m1 gives rise to an element of PU(1, 1) which we can lift to
an element of SU(1, 1), call this A. Similarly, let B correspond to (R1R3)2, C correspond to
(R1R2R3R

−1
2 )3, and D correspond to (R1R

−1
3 R2R3)3. As such, Γ1 = 〈A,B,C,D〉, where the

generators are given explicitly by

A =

(
−ia3 0

ia− ia2τ ia3

)
B = − i

τ

(
−a3 − τ −τa4 − τa− a2

2a− a2τ −τa3 + a3 + τa3 + τ

)
C = − 1

τ
√
a3

(
−i+ iτa3 − iτa3 − iτa6 ia+ iτa2 − ia5 − iτa8

iτa− iτa2 − ia4 i− iτa3 − ia6

)
D = − 1

τ
√
a3

(
−τia3 + iτa3 − i+ iτ + ia6 2ia+ 2iτa2 − iτa4 − 2ia5 − iτa8

iτa− ia2 − iτa4 iτa3 + ia3 − ia6 + iτa6 + i− iτ

)
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In order to determine arithmeticity, it should be straightforward to determine the appropriate
Hermitian form for Γ1 and the adjoint trace field to then apply Lemma 7.

The arrangement of the mirrors have different configurations for p = 3 (where they
intersect in H2

C), for p = 4 (where they intersect in ∂∞H2
C), and for p ≥ 5 (where they are

ultraparallel). As such, it may be useful to explore each of these cases separately.

5.1.1 The case p ≥ 5

Since the mi are all ultraparallel, there is a unique perpendicular passing through each pair.
We follow with [DPP16a] and let mij denote the unique complex line perpendicular to both
mi and mj. In particular, m12 is stabilized by reflections R1 and R2, so we can find elements
X1, X2 in SU(1, 1) corresponding to their actions, respectively.

X1 =
1√
a3

(
a3 aτ
0 1

)
X2 =

1√
a

(
a 0
−τa a2

)
Lemma 40. Let Λ2 = 〈R1, R2〉. Then Γ2 := Λ2|m12 is a cocompact arithmetic lattice in
PU(1, 1)

Proof. X1 and X2 both act on m12 by order-p rotations about distinct points, and their
product is elliptic of order 2, whence Γ2 is a (2, p, p)-triangle group. Comparing with the
classification of arithmetic triangle groups in [Tak77], we see that Γ3 is arithmetic for p =
5, 6, 8, 12.

Question 41. For p ≥ 5, is H(Γ1,Γ2) = 〈Λ1,Λ2〉 a lattice in Γ(p, τ)?

The computer algebra system Magma [BCP19] [BCP97] is unable to compute the index
of this subgroup, suggesting the answer to this question is likely false. It is presently unclear
how to approach, however, as the techniques used in [PW18] do not seem to carry over in
this case.

5.2 Hybrids in PU(n, 1) for n ≥ 3

Given the success of the hybrid construction producing arithmetic lattices in PU(2, 1), the
next obvious challenge is to try it in PU(3, 1) (where, up to commensurability, we only have
two examples of non-arithmetic lattices, see [Der17] and references therein). For n ≥ 3, the
third condition of the construction (that Λ1 ∩ Λ2 be a lattice in PU(n− 1, 1)) is nontrivial.
It is presently unclear if the assumption is strictly necessary, but certainly without it, it is
not too difficult to construct a non-discrete hybrid, as the following example shows.

Example 42. Consider the ball model of H3
C. Let Γ1 = SU(2, 1;O1), Γ2 = SU(2, 1;O3),

and Λj = ιj where ιj are the following embeddings of SU(2, 1) into SU(3, 1):

ι1 :

(
A1×1 A1×2

A2×1 A2×2

)
7→

1 0 0
0 A1×1 A1×2

0 A2×1 A2×2

 ι2 :

(
A1×1 A1×2

A2×1 A2×2

)
7→

A1×1 0 A1×2

0 1 0
A2×1 0 A2×2


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The intersection of these subgroups is precisely the set of block-diagonal matrices1 0 0
0 1 0
0 0 A2×2


where the submatrix A2×2 ∈ SU(1, 1) has coefficients in O1 ∩ O3 = Z. It is an elementary
exercise to see that any element of SU(1, 1) has the form(

a b
b a

)
from which is follows that SU(1, 1;Z) is finite.

Consider the following element in H(Γ1,Γ2):

A = ι1

1 0 0
0 i 0
0 0 −i

 · ι2
1 + i

√
3 0 −i

√
3

0 1 0

i
√

3 0 1− i
√

3

 =


1 + i

√
3 0 0 −i

√
3

0 1 0 0
0 0 i 0√
3 0 0 −i−

√
3


S is elliptic with fixed point[(

−1

6
− i

6

)(
−
√

3 +

√
6
(√

3− 1
)
− 3

)
, 0, 0, 1

]

and all eigenvalues of S have absolute value 1. To have finite order, it must be that all of
A’s eigenvalues are roots of unity. A has characteristic polynomial

(x− i) (x− 1)
(
x2 + (1− i)

√
dx− (1− i)x− i

)
and this divides the following polynomial in Z[x]

p = (x− 1)
(
x2 + 1

) (
x8 − 4x7 + 8x6 + 12x5 + 2x4 + 12x3 + 8x2 − 4x+ 1

)
There are only finitely-many cyclotomic polynomials with degree at most 8,(and with the
aid of a computer, one can determine these 18 polynomials explicitly). It is straightforward
to verify that p is divisible by exactly 2 cyclotomic polynomials, x − 1 and x2 + 1, (with
no multiplicity). It follows thusly that A can have at most 3 eigenvalues which are roots of
unity, hence A is an elliptic with infinite order and therefore H(Γ1,Γ2) is not discrete.

Remark. We remark that the only known nonarithmetic lattices in SU(3, 1) (see [Der17]) are
defined over Q(ζ12), which is the composite of Q(i) and Q(i

√
3).

One may ask whether there exist hybrids at all that do satisfy this intersection condition.
When n is odd, indeed there is a fairly straightforward construction (somewhat similar to
that used in [GPS87]). Let E/F be an imaginary quadratic extension of a totally real number
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field, and let α1, . . . , αn+2 ∈ F such that α1, . . . , αn+1 > 0 and αn+2 < 0. Define the following
Hermitian matrices:

H12 = diag{α3, α4, α5, . . . , αn+2}
H1 = diag{α2, α3, α4, . . . , αn+2}
H2 = diag{α1, α3, α4, . . . , αn+2}
H = diag{α1, . . . , αn+2}

Suppose further that α1, α2 are in two different classes of F×/NE/F (E×). By the work of
Borel–Harish-Chandra, it follows that Γ1 := SU(H1,OE) is an arithmetic lattice in SU(H1)
and Γ2 := SU(H2,OE) is an arithmetic lattice in SU(H2) (Γ1 and Γ2 are arithmetic lattices
of the first type, see Chapter 5 in [McR19]), and the Γi are not commensurable (see Theorem
6.11 of [McR19] or Chapter 10 of [Sch85]). We can then consider the following maps from
GL(n+ 1,C) into GL(n+ 2,C)

ι1 :

(
A1×1 A1×n
An×1 An×n

)
7→

1
A1×1 A1×n
An×1 An×n


ι2 :

(
A1×1 A1×n
An×1 An×n

)
7→

A1×1 A1×n
1

An×1 An×n


In this way, ι1 embeds SU(H1) into SU(H) and ι2 embeds SU(H2) into SU(H) so that their
intersection is precisely SU(H12). Λ1 := ι1(Γ1) stabilizes Σ1 = (1, 0, . . . , 0)⊥, Λ2 := ι2(Γ2)
stabilizes Σ2 = (0, 1, 0, . . . , 0)⊥, and the Σi are orthogonal. Moreover, Λ1∩Λ2

∼= SU(H12,OE),
an arithmetic lattice in SU(H2), so indeed Λ = 〈Λ1,Λ2〉 is a hybridization of Γ1 and Γ2,
although it is unclear if Λ is a lattice or arithmetic.
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de l’IHÉS, 76:165–246, 1992.

[Hel01] Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces, vol-
ume 34 of Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, 2001. Corrected reprint of the 1978 original.



BIBLIOGRAPHY 39

[Kap98] Michael Kapovich. On normal subgroups in the fundamental groups of complex
surfaces. 08 1998. arXiv:math/9808085.

[Kap13] Michael Kapovich. Noncoherence of arithmetic hyperbolic lattices. Geom. Topol.,
17(1):39–71, 2013.

[Kra69] Irwin Kra. Deformations of Fuchsian groups. Duke Math. J., 36:537–546, 1969.

[Kra71] Irwin Kra. Deformations of Fuchsian groups. II. Duke Math. J., 38:499–508, 1971.

[KT92] Yoshinobu Kamishima and Ser P. Tan. Deformation spaces on geometric struc-
tures. In Aspects of low-dimensional manifolds, volume 20 of Adv. Stud. Pure
Math., pages 263–299. Kinokuniya, Tokyo, 1992.

[LR14] D. D. Long and A. W. Reid. Constructing thin groups. In Thin groups and
superstrong approximation, volume 61 of Math. Sci. Res. Inst. Publ., pages 151–
166. Cambridge Univ. Press, Cambridge, 2014.

[Mar84] G. A. Margulis. Arithmeticity of the irreducible lattices in the semi-simple groups
of rank greater than 1. Inventiones mathematicae, 76(1):93–120, 02 1984.

[Mar91] G. A. Margulis. Discrete subgroups of semisimple Lie groups, volume 17 of Ergeb-
nisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and
Related Areas (3)]. Springer-Verlag, Berlin, 1991.

[McR19] David B. McReynolds. Arithmetic lattices in SU(n, 1). 2019. Notes in progress.

[Mor15] Dave Witte Morris. Introduction to arithmetic groups. Deductive Press, 2015.

[Mos73] G. D. Mostow. Strong rigidity of locally symmetric spaces. Princeton Univer-
sity Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. Annals of
Mathematics Studies, No. 78.

[Mos80] G. D. Mostow. On a remarkable class of polyhedra in complex hyperbolic space.
Pacific J. Math., 86(1):171–276, 1980.

[Mos86] G. D. Mostow. Generalized Picard lattices arising from half-integral conditions.
Inst. Hautes Études Sci. Publ. Math., (63):91–106, 1986.

[MP17] Alice Mark and Julien Paupert. Presentations for cusped arithmetic hyperbolic
lattices. 09 2017. arXiv:1709.06691.

[MR03] Colin Maclachlan and Alan W. Reid. The arithmetic of hyperbolic 3-manifolds,
volume 219 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2003.

[Nik87] V. V. Nikulin. Discrete reflection groups in Lobachevsky spaces and algebraic
surfaces. In Proceedings of the International Congress of Mathematicians, Vol.
1, 2 (Berkeley, Calif., 1986), pages 654–671. Amer. Math. Soc., Providence, RI,
1987.



40 BIBLIOGRAPHY

[Oh98] Hee Oh. Discrete subgroups generated by lattices in opposite horospherical sub-
groups. J. Algebra, 203(2):621–676, 1998.

[Par03] John R Parker. Notes on complex hyperbolic geometry. 2003.

[Par06] John R. Parker. Cone metrics on the sphere and Livné’s lattices. Acta Math.,
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